
Supermemory MCP
Handbuch für Claude

Persistentes Gedächtnis für KI-Assistenten

Universelles Memory über alle MCP-Clients hinweg

Version 1.0

Februar 2026

Supermemory MCP Handbuch 1

Inhaltsverzeichnis

1 Einführung 3

1.1 Was ist Supermemory? . 3

1.2 Anwendungsfälle . 3

1.3 Architektur-Übersicht . 3

2 Voraussetzungen 4

2.1 Systemanforderungen . 4

2.2 Unterstützte MCP-Clients . 4

2.3 Account erstellen . 4

2.4 API-Key generieren (optional) . 4

3 Installation 5

3.1 One-Click Installation (Empfohlen) . 5

3.2 Manuelle Installation via CLI . 5

3.3 Claude.ai (Web-Interface) . 5

3.4 Claude Desktop . 6

3.4.1 Konfigurationsdatei finden . 6

3.4.2 Konfiguration mit URL (SSE Transport) 6

3.4.3 Konfiguration mit API-Key . 6

3.4.4 Konfiguration mit Supergateway (npx) . 6

3.5 Claude Code (CLI) . 7

3.6 Cursor IDE . 7

3.6.1 Globale Konfiguration . 7

3.6.2 Projekt-spezifische Konfiguration . 7

3.7 VS Code . 8

3.8 Nach der Installation . 8

4 Verfügbare Tools 8

4.1 memory – Speichern und Vergessen . 8

4.2 recall – Suchen und Abrufen . 9

4.3 listProjects – Projekte auflisten . 10

Stand: Februar 2026

Supermemory MCP Handbuch 2

4.4 whoAmI – Benutzerinfo . 10

5 Betrieb und Best Practices 10

5.1 Was sollte gespeichert werden? . 10

5.2 Memory-Formulierung . 11

5.3 Projekte effektiv nutzen . 11

5.4 Automatisches Speichern aktivieren . 12

5.5 Memory-Hygiene . 12

6 Troubleshooting 12

6.1 Häufige Probleme und Lösungen . 12

6.2 Konfiguration validieren . 13

6.3 Logs prüfen . 13

6.4 Verbindung testen . 13

7 Datenschutz und Sicherheit 14

7.1 Daten löschen . 14

7.2 Self-Hosting (Volle Datenkontrolle) . 14

7.3 Alternative: Lokale Memory-Lösungen . 15

8 Referenz 15

8.1 Alle MCP-Tools im Überblick . 15

8.2 Unterstützte Clients . 15

8.3 Nützliche Links . 15

8.4 Beispiel-Konfigurationen . 16

9 Changelog 16

Stand: Februar 2026

Supermemory MCP Handbuch 3

1 Einführung

1.1 Was ist Supermemory?

Supermemory ist ein Cloud-basierter Memory-Service für Large Language Models (LLMs),
der über das Model Context Protocol (MCP) angebunden wird. Der Dienst ermöglicht es KI-
Assistenten wie Claude, Informationen über Sitzungen hinweg zu speichern und abzurufen.

Kernfunktionen:

• Universelles Memory – Gleiche Memories in allen MCP-Clients verfügbar

• Geräteübergreifende Synchronisation – Zugriff von Desktop, Web und Mobile

• Automatische Deduplizierung – Keine doppelten Einträge

• Semantische Suche – Findet relevante Memories basierend auf Bedeutung

• User Profile Aggregation – Erstellt automatisch strukturierte Profile

• Projekt-Scoping – Organisiert Memories nach Projekten

1.2 Anwendungsfälle

Anwendungsfall Beschreibung

Entwickler-Workflow Technische Präferenzen, Projekt-Kontexte und Code-
Patterns über IDE-Wechsel hinweg beibehalten

Persönlicher Assistent Termine, Präferenzen und persönliche Fakten speichern
Recherche Erkenntnisse aus mehreren Sitzungen aggregieren
Team-Arbeit Projekt-spezifische Informationen mit Team-

Mitgliedern teilen

1.3 Architektur-Übersicht

MCP Client ←→ Supermemory API
(Claude, Cursor) OAuth/API Key (api.supermemory.ai)

↓ MCP Protocol

Supermemory MCP Server
mcp.supermemory.ai/mcp

Cloudflare Durable Objects:
– Session State
– Memory Storage
– Profile Generation

Stand: Februar 2026

Supermemory MCP Handbuch 4

2 Voraussetzungen

2.1 Systemanforderungen

Komponente Anforderung

Node.js Version 18 oder höher
npm/npx Aktuell (mit Node.js installiert)
Internet Stabile Verbindung (Cloud-Dienst)
Browser Für OAuth-Authentifizierung

2.2 Unterstützte MCP-Clients

• Claude.ai (Web-Interface)

• Claude Desktop (macOS, Windows, Linux)

• Claude Code (CLI)

• Cursor IDE

• VS Code (mit Copilot)

• Windsurf

• Cline

• Gemini CLI

2.3 Account erstellen

1. Besuche https://app.supermemory.ai

2. Melde dich an mit Google, GitHub oder E-Mail

3. Du erhältst automatisch eine persönliche URL im Format:
https://mcp.supermemory.ai/[USER_ID]/sse

Tipp

Die persönliche URL wird automatisch generiert und ist permanent. Du kannst sie jederzeit
im Dashboard abrufen.

2.4 API-Key generieren (optional)

Für erweiterte Nutzung oder Self-Hosting:

1. Besuche https://console.supermemory.ai

2. Navigiere zu API Keys

Stand: Februar 2026

https://app.supermemory.ai
https://console.supermemory.ai

Supermemory MCP Handbuch 5

3. Klicke auf Create New Key

4. Kopiere den Key (Format: sm_xxxxxxxxxxxxxxxx)

Wichtig

Der API-Key wird nur einmal angezeigt! Speichere ihn sicher ab.

3 Installation

3.1 One-Click Installation (Empfohlen)

Die einfachste Methode für die meisten Clients:

1. Besuche https://app.supermemory.ai

2. Melde dich an

3. Klicke auf „Connect to your AI"

4. Wähle deinen Client (z.B. Claude Desktop, Cursor)

5. Klicke auf den entsprechenden „Add to [Client]" Button

6. Bestätige im Client-Popup

3.2 Manuelle Installation via CLI

Universelle Methode für alle Clients:

Allgemeines Format
npx -y install-mcp@latest https://mcp.supermemory.ai/mcp \

--client [CLIENT] --oauth=yes

Beispiele fuer verschiedene Clients
npx -y install-mcp@latest https://mcp.supermemory.ai/mcp --client claude --oauth=yes
npx -y install-mcp@latest https://mcp.supermemory.ai/mcp --client cursor --oauth=yes
npx -y install-mcp@latest https://mcp.supermemory.ai/mcp --client windsurf --oauth=yes

Info

Der install-mcp Befehl konfiguriert den Client automatisch und öffnet den Browser für
die OAuth-Authentifizierung.

3.3 Claude.ai (Web-Interface)

Claude.ai unterstützt Remote-MCP-Server nativ:

1. Öffne Claude.ai → Settings → Integrations

Stand: Februar 2026

https://app.supermemory.ai

Supermemory MCP Handbuch 6

2. Klicke auf „Add Integration"

3. Wähle Supermemory aus der Liste

4. Authentifiziere dich über OAuth (Browser-Popup)

3.4 Claude Desktop

3.4.1 Konfigurationsdatei finden

Betriebssystem Pfad

macOS ~/Library/Application Support/Claude/claude_desktop_config.json
Windows %APPDATA%\Claude\claude_desktop_config.json
Linux ~/.config/Claude/claude_desktop_config.json

3.4.2 Konfiguration mit URL (SSE Transport)

{
"mcpServers": {

"supermemory": {
"transport": "sse",
"url": "https://mcp.supermemory.ai/mcp"

}
}

}

3.4.3 Konfiguration mit API-Key

{
"mcpServers": {

"supermemory": {
"url": "https://mcp.supermemory.ai/mcp",
"headers": {

"Authorization": "Bearer sm_dein_api_key_hier"
}

}
}

}

3.4.4 Konfiguration mit Supergateway (npx)

{
"mcpServers": {

"supermemory": {
"command": "npx",
"args": ["-y", "supergateway", "--sse",

"https://mcp.supermemory.ai/[USER_ID]/sse"]

Stand: Februar 2026

Supermemory MCP Handbuch 7

}
}

}

3.5 Claude Code (CLI)

Mit OAuth (empfohlen)
claude mcp add supermemory -- npx -y install-mcp \

https://mcp.supermemory.ai/mcp --oauth=yes

Alternativ: Direkte Konfiguration
claude mcp add supermemory --url https://mcp.supermemory.ai/mcp

Installation verifizieren
claude mcp list

3.6 Cursor IDE

3.6.1 Globale Konfiguration

Bearbeite ~/.cursor/mcp.json:

{
"mcpServers": {

"supermemory": {
"command": "npx",
"args": ["-y", "@supermemory/mcp"]

}
}

}

3.6.2 Projekt-spezifische Konfiguration

Erstelle .cursor/mcp.json im Projektordner:

{
"mcpServers": {

"supermemory": {
"url": "https://mcp.supermemory.ai/mcp",
"headers": {

"x-sm-project": "mein-projekt"
}

}
}

}

Stand: Februar 2026

Supermemory MCP Handbuch 8

3.7 VS Code

Erstelle .vscode/mcp.json im Projektordner:

{
"mcpServers": {

"supermemory": {
"command": "npx",
"args": ["-y", "@supermemory/mcp"]

}
}

}

3.8 Nach der Installation

1. Client neu starten – Schließe und öffne den Client vollständig

2. Tools prüfen – Die Supermemory-Tools sollten verfügbar sein

3. Test durchführen – Frage Claude: „Welche Memory-Tools hast du?"

4 Verfügbare Tools

Supermemory stellt vier MCP-Tools bereit:

4.1 memory – Speichern und Vergessen

Speichert neue Informationen oder löscht bestehende Memories.

Parameter Typ Beschreibung

action string ßave" oder "forget" (Standard: sa-
ve)

content string Der Inhalt (max. 200.000 Zeichen)
containerTag string Optional: Projekt-Scope

Beispiel – Speichern:

{
"action": "save",
"content": "Nutzer bevorzugt Python und VS Code als IDE."

}

Beispiel – Mit Projekt-Scope:

{
"action": "save",
"content": "API-Endpoint: api.example.com/v2",

Stand: Februar 2026

Supermemory MCP Handbuch 9

"containerTag": "projekt_alpha"
}

Beispiel – Vergessen:

{
"action": "forget",
"content": "Veraltete Information die nicht mehr gilt."

}

4.2 recall – Suchen und Abrufen

Durchsucht die gespeicherten Memories semantisch.

Parameter Typ Beschreibung

query string Suchanfrage (max. 1.000 Zeichen)
includeProfile boolean User Profile einbeziehen (Standard:

true)
containerTag string Optional: Nur in Projekt suchen

Beispiel:

{
"query": "Programmiersprachen Praeferenzen",
"includeProfile": true

}

Rückgabe-Struktur:

{
"User Profile": {

"Recent context": [
"Arbeitet aktuell an Projekt X",
"Bevorzugt TypeScript"

],
"Persistent facts": [

"Software-Entwickler",
"Nutzt macOS"

]
},
"Relevant Memories": [

{
"id": "mem_abc123",
"content": "Bevorzugt Python fuer Data Science",
"match": "78%"

},
{

"id": "mem_def456",
"content": "IDE: VS Code mit Vim-Extension",
"match": "65%"

}

Stand: Februar 2026

Supermemory MCP Handbuch 10

]
}

4.3 listProjects – Projekte auflisten

Zeigt alle verfügbaren Projekt-Container an.

Parameter Typ Beschreibung

refresh boolean Liste vom Server neu laden (Stan-
dard: true)

Beispiel-Rückgabe:

{
"projects": [

"sm_project_default",
"projekt_alpha",
"webapp_redesign"

]
}

4.4 whoAmI – Benutzerinfo

Gibt Informationen über den authentifizierten Benutzer zurück.

{
"user_id": "usr_abc123",
"email": "user@example.com",
"plan": "pro",
"memory_count": 142

}

5 Betrieb und Best Practices

5.1 Was sollte gespeichert werden?

Tipp

Speichere Fakten und Präferenzen, nicht Konversationen. Supermemory aggregiert
automatisch ein strukturiertes User Profile.

Empfohlene Inhalte:

• Technische Präferenzen (Sprachen, Tools, Frameworks)

Stand: Februar 2026

Supermemory MCP Handbuch 11

• Projekt-Kontexte und Zustände

• Wichtige Entscheidungen und deren Begründungen

• API-Endpoints und Konfigurationen

• Workflow-Beschreibungen

• Persönliche Präferenzen (Kommunikationsstil, Formatierung)

Nicht empfohlen:

• Passwörter, API-Keys, Secrets

• Vollständige Konversationen

• Temporäre oder einmalige Informationen

• Sensible persönliche Daten

5.2 Memory-Formulierung

Gut formulierte Memories:

"Nutzer ist Senior Backend-Entwickler mit 8 Jahren Erfahrung"
"Bevorzugt funktionale Programmierung ueber OOP"
"Projekt X: React-Frontend, FastAPI-Backend, PostgreSQL"
"Code-Review-Stil: Bevorzugt konstruktives Feedback mit Beispielen"

Schlecht formulierte Memories:

"Okay" (zu vage)
"User fragte nach Hilfe" (keine Information)
"Das Projekt" (zu unspezifisch)

5.3 Projekte effektiv nutzen

Organisiere Memories nach Projekten für bessere Übersicht:

Projekt-spezifisches Memory speichern
{

"action": "save",
"content": "Sprint 42: Authentication-Modul fertig",
"containerTag": "webapp_v2"

}

Nur in Projekt suchen
{

"query": "Sprint Status",
"containerTag": "webapp_v2"

}

Stand: Februar 2026

Supermemory MCP Handbuch 12

5.4 Automatisches Speichern aktivieren

Um Claude anzuweisen, wichtige Informationen automatisch zu speichern:

Option 1: User Preferences (Claude.ai)

1. Öffne Settings → Profile → User Preferences

2. Füge hinzu: „Speichere wichtige Erkenntnisse aus Gesprächen automatisch in Supermemory."

Option 2: Direkte Anweisung

Sage Claude:

„Bitte speichere ab jetzt alle wichtigen Informationen, die du über mich oder meine
Projekte lernst, automatisch in Supermemory."

5.5 Memory-Hygiene

Regelmäßige Pflege der Memories:

1. Überprüfen – Nutze recall mit breiten Queries um alle Memories zu sehen

2. Aufräumen – Lösche veraltete Informationen mit forget

3. Aktualisieren – Speichere korrigierte Versionen

4. Konsolidieren – Fasse ähnliche Memories zusammen

6 Troubleshooting

6.1 Häufige Probleme und Lösungen

Problem Lösung

Tools nicht sichtbar Client vollständig neu starten. MCP-Konfiguration
auf JSON-Syntax prüfen.

OAuth-Fehler Browser-Cookies löschen. Inkognito-Fenster für
Auth nutzen.

„No memories found" Breitere Suchbegriffe verwenden. includeProfile:
true setzen.

Timeout bei Recall Internetverbindung prüfen. Später erneut versuchen.

Duplikate gespeichert Supermemory dedupliziert automatisch. Bei Bedarf
forget nutzen.

API-Key ungültig Neuen Key in Console generieren. Format sm_...
prüfen.

Stand: Februar 2026

Supermemory MCP Handbuch 13

6.2 Konfiguration validieren

JSON-Syntax pruefen (macOS/Linux)
cat ~/.cursor/mcp.json | python3 -m json.tool

Node.js Version pruefen
node --version # Muss >= 18 sein

npx testen
npx -y @supermemory/mcp --help

MCP-Server-Liste anzeigen (Claude Code)
claude mcp list

6.3 Logs prüfen

Claude Desktop:

macOS
tail -f ~/Library/Logs/Claude/mcp*.log

Windows (PowerShell)
Get-Content "$env:APPDATA\Claude\logs\mcp*.log" -Wait

Linux
tail -f ~/.config/Claude/logs/mcp*.log

Cursor:

Developer Tools oeffnen:
macOS: Cmd+Shift+I
Windows/Linux: Ctrl+Shift+I
Console-Tab fuer Fehler pruefen

6.4 Verbindung testen

Server-Erreichbarkeit pruefen
curl -I https://mcp.supermemory.ai/mcp

Mit Auth-Header
curl -H "Authorization: Bearer sm_your_key" \

https://mcp.supermemory.ai/mcp

Stand: Februar 2026

Supermemory MCP Handbuch 14

7 Datenschutz und Sicherheit

Achtung

Supermemory ist ein Cloud-Dienst. Alle Memories werden auf Supermemory-Servern
gespeichert. Speichere niemals:

• Passwörter oder API-Keys

• Kreditkarten- oder Bankdaten

• Sozialversicherungsnummern oder Ausweisdaten

• Vertrauliche Geschäftsgeheimnisse

• Gesundheitsdaten

7.1 Daten löschen

Einzelne Memories:

{
"action": "forget",
"content": "Der exakte Inhalt der zu loeschenden Memory"

}

Alle Daten löschen:

1. Besuche https://console.supermemory.ai

2. Navigiere zu Settings → Account

3. Klicke auf Delete All Data oder Delete Account

7.2 Self-Hosting (Volle Datenkontrolle)

Für maximale Datenkontrolle kann Supermemory selbst gehostet werden:

Repository klonen
git clone https://github.com/supermemoryai/supermemory-mcp.git
cd supermemory-mcp

Umgebungsvariablen setzen
echo "SUPERMEMORY_API_KEY=sm_your_key" > .env

Server starten
npm install
npm run dev

Stand: Februar 2026

https://console.supermemory.ai

Supermemory MCP Handbuch 15

7.3 Alternative: Lokale Memory-Lösungen

Für vollständig lokale Speicherung ohne Cloud:

Lösung Beschreibung

@modelcontextprotocol/server-memory Offizieller Anthropic Memory Server mit SQLite
mcp-memory-service Feature-reich mit Embeddings und Web-

Dashboard
memory-bank-mcp Projekt-spezifische Markdown-Notizen
mcp-knowledge-graph Strukturierte Knowledge Graphs

8 Referenz

8.1 Alle MCP-Tools im Überblick

Tool Parameter Beschreibung

memory action, content, containerTag Speichert oder löscht Memories
recall query, includeProfile, containerTag Semantische Suche
listProjects refresh Zeigt verfügbare Projekte
whoAmI – Benutzerinformationen

8.2 Unterstützte Clients

Client Plattform Transport

Claude.ai Web Native Integration
Claude Desktop macOS, Windows, Linux SSE/stdio
Claude Code CLI stdio
Cursor macOS, Windows, Linux stdio
VS Code macOS, Windows, Linux stdio
Windsurf macOS, Windows, Linux stdio
Cline VS Code Extension stdio
Gemini CLI CLI stdio

8.3 Nützliche Links

• Web-App: https://app.supermemory.ai

• Console: https://console.supermemory.ai

• Dokumentation: https://docs.supermemory.ai

• GitHub (MCP): https://github.com/supermemoryai/supermemory-mcp

• GitHub (Main): https://github.com/supermemoryai/supermemory

• Install-MCP CLI: https://github.com/supermemoryai/install-mcp

Stand: Februar 2026

https://app.supermemory.ai
https://console.supermemory.ai
https://docs.supermemory.ai
https://github.com/supermemoryai/supermemory-mcp
https://github.com/supermemoryai/supermemory
https://github.com/supermemoryai/install-mcp

Supermemory MCP Handbuch 16

• MCP Protokoll: https://modelcontextprotocol.io

8.4 Beispiel-Konfigurationen

Minimale Konfiguration (URL-basiert):

{
"mcpServers": {

"supermemory": {
"url": "https://mcp.supermemory.ai/mcp"

}
}

}

Mit API-Key und Projekt:

{
"mcpServers": {

"supermemory": {
"url": "https://mcp.supermemory.ai/mcp",
"headers": {

"Authorization": "Bearer sm_xxx",
"x-sm-project": "mein-projekt"

}
}

}
}

npx-basiert (Cursor/VS Code):

{
"mcpServers": {

"supermemory": {
"command": "npx",
"args": ["-y", "@supermemory/mcp"]

}
}

}

9 Changelog

Version Datum Änderungen

1.0 Februar 2026 Erstveröffentlichung

Stand: Februar 2026

https://modelcontextprotocol.io

	Einführung
	Was ist Supermemory?
	Anwendungsfälle
	Architektur-Übersicht

	Voraussetzungen
	Systemanforderungen
	Unterstützte MCP-Clients
	Account erstellen
	API-Key generieren (optional)

	Installation
	One-Click Installation (Empfohlen)
	Manuelle Installation via CLI
	Claude.ai (Web-Interface)
	Claude Desktop
	Konfigurationsdatei finden
	Konfiguration mit URL (SSE Transport)
	Konfiguration mit API-Key
	Konfiguration mit Supergateway (npx)

	Claude Code (CLI)
	Cursor IDE
	Globale Konfiguration
	Projekt-spezifische Konfiguration

	VS Code
	Nach der Installation

	Verfügbare Tools
	memory – Speichern und Vergessen
	recall – Suchen und Abrufen
	listProjects – Projekte auflisten
	whoAmI – Benutzerinfo

	Betrieb und Best Practices
	Was sollte gespeichert werden?
	Memory-Formulierung
	Projekte effektiv nutzen
	Automatisches Speichern aktivieren
	Memory-Hygiene

	Troubleshooting
	Häufige Probleme und Lösungen
	Konfiguration validieren
	Logs prüfen
	Verbindung testen

	Datenschutz und Sicherheit
	Daten löschen
	Self-Hosting (Volle Datenkontrolle)
	Alternative: Lokale Memory-Lösungen

	Referenz
	Alle MCP-Tools im Überblick
	Unterstützte Clients
	Nützliche Links
	Beispiel-Konfigurationen

	Changelog

