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Kapitel 1

Ereignisse und Operationen

1.1 Einführung

Wahrscheinlichkeitstheorie (künftig Wtheorie) ist die Mathematik zur Quantifizierung von Un-
sicherheit. Wir zeigen hier grundlegenden Konzepte und starten mit dem Ergebnisraum als
Menge aller möglichen Ausgänge.

1.2 Ergebnisräume und Ereignisse

Der Ergebnisraum Ω ist die Menge aller möglichen Ausgänge eines Experiments. Punkte
ω ∈ Ω heißen Ergebnisse, Realisierungen oder Elemente. Teilmengen von Ω nennen wir
Ereignisse.

Beispiel 1.2.1

Beim zweimaligen Münzwurf ist Ω = {KK,KZ,ZK,ZZ}. Das Ereignis ’erster Wurf
ist Kopf’ ist A = {KK,KZ}.

Beispiel 1.2.2

Sei ω das Ergebnis einer physikalischen Messung, z. B. der Temperatur. Dann ist Ω =
R = (−∞,∞). Man könnte argumentieren, dass Ω = R ungenau ist, da Temperatur
eine untere Grenze besitzt. In der Praxis schadet es jedoch nicht, den Ergebnisraum
größer zu wählen. Das Ereignis, dass die Messung größer als 10 aber höchstens 23
ist, lautet A = (10, 23].
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6 KAPITEL 1. EREIGNISSE UND OPERATIONEN

Beispiel 1.2.3

Beim unendlich oft wiederholten Münzwurf ist

Ω = {ω = (ω1, ω2, ω3, . . .) : ωi ∈ {K,Z}} .

Das Ereignis, dass der erste Kopf beim dritten Wurf erscheint, ist

E = {(ω1, ω2, ω3, . . .) : ω1 = Z, ω2 = Z, ω3 = K,ωi ∈ {K,Z} für i > 3} .

Mengenoperationen

Für ein Ereignis A bezeichnen wir mit Ac = {ω ∈ Ω : ω /∈ A} das Komplement von A („nicht
A). Das Komplement von Ω ist die leere Menge ∅.

Die Vereinigung von A und B ist

A ∪B = {ω ∈ Ω : ω ∈ A oder ω ∈ B}

(„"A oder B). Für eine Folge A1, A2, . . . ist

∞⋃
i=1

Ai = {ω ∈ Ω : ω ∈ Ai für mindestens ein i} .

Der Durchschnitt ist

A ∩B = {ω ∈ Ω : ω ∈ A und ω ∈ B}

(„"A und B). Wir schreiben auch AB statt A ∩B. Für eine Folge gilt

∞⋂
i=1

Ai = {ω ∈ Ω : ω ∈ Ai für alle i} .

Die Differenz ist A − B = {ω : ω ∈ A, ω /∈ B}. Ist jedes Element von A in B enthalten,
schreiben wir A ⊂ B. Für eine endliche Menge A bezeichnet |A| die Anzahl ihrer Elemente.

Symbol Bedeutung
Ω Ergebnisraum
ω Ergebnis (Punkt, Element)
A Ereignis (Teilmenge von Ω)
Ac Komplement von A (nicht A)
A ∪B Vereinigung (A oder B)
A ∩B Durchschnitt (A und B)
A−B Mengendifferenz (ω in A, aber nicht in B)
A ⊂ B Inklusion
∅ Leere Menge (unmögliches Ereignis)
Ω Sicheres Ereignis

Ereignisse A1, A2, . . . heißen disjunkt oder paarweise disjunkt, falls Ai ∩ Aj = ∅ für
i ̸= j. Eine Zerlegung (Partition) von Ω ist eine Folge disjunkter Mengen A1, A2, . . . mit⋃∞

i=1Ai = Ω.
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Die Indikatorfunktion von A ist

IA(ω) = I(ω ∈ A) =

{
1 falls ω ∈ A,

0 falls ω /∈ A.

Eine Folge A1, A2, . . . ist monoton wachsend, falls A1 ⊂ A2 ⊂ · · · , und wir definieren
limn→∞An =

⋃∞
i=1Ai. Sie ist monoton fallend, falls A1 ⊃ A2 ⊃ · · · , und dann limn→∞An =⋂∞

i=1Ai. In beiden Fällen schreiben wir An → A.

Beispiel 1.2.4

Sei Ω = R und Ai = [0, 1/i) für i = 1, 2, . . .. Dann ist
⋃∞

i=1Ai = [0, 1) und
⋂∞

i=1Ai = {0}.
Definiert man stattdessen Ai = (0, 1/i), so ist

⋃∞
i=1Ai = (0, 1) und

⋂∞
i=1Ai = ∅.

Lemma 1
Sei A1, A2, . . . eine monoton wachsende Folge von Ereignissen mit A = limn→∞An.
Dann gilt

P (A) = lim
n→∞

P (An).

Analog gilt für eine monoton fallende Folge P (limn→∞An) = limn→∞ P (An).

Beweis. Für monoton wachsende Folgen folgt dies direkt aus Theorem 1.8 (Stetigkeit von
Wahrscheinlichkeiten). Für monoton fallende Folgen A1 ⊃ A2 ⊃ · · · ist Ac

1 ⊂ Ac
2 ⊂ · · ·

monoton wachsend mit

∞⋃
i=1

Ac
i =

(
∞⋂
i=1

Ai

)c

.

Mit dem ersten Teil folgt

P

(
∞⋂
i=1

Ai

)
= 1− P

(
∞⋃
i=1

Ac
i

)
= 1− lim

n→∞
P (Ac

n) = lim
n→∞

P (An).

1.3 Wahrscheinlichkeit

Jedem Ereignis A ordnen wir eine reelle Zahl P (A) zu, die Wahrscheinlichkeit von A. Wir
nennen P auch eine Wahrscheinlichkeitsverteilung oder ein Wahrscheinlichkeitsmaß.



8 KAPITEL 1. EREIGNISSE UND OPERATIONEN

Definition 1
Eine Funktion P , die jedem Ereignis A eine reelle Zahl P (A) zuordnet, ist eine Wahr-
scheinlichkeitsverteilung oder ein Wahrscheinlichkeitsmaß, falls folgende drei
Axiome gelten:
Axiom 1: P (A) ≥ 0 für jedes A
Axiom 2: P (Ω) = 1
Axiom 3: Sind A1, A2, . . . disjunkt, so gilt

P

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai).

Es gibt zwei gängige Interpretationen von P (A): die Häufigkeitsinterpretation und die
Glaubensgrad-Interpretation. In der Häufigkeitsinterpretation ist P (A) der langfristige An-
teil, mit dem A bei Wiederholungen eintritt. Sagen wir etwa, die Wahrscheinlichkeit für Kopf
sei 1/2, so meinen wir, dass bei vielen Würfen der Anteil von Kopf gegen 1/2 konvergiert.

In der Glaubensgrad-Interpretation misst P (A) die Stärke der Überzeugung eines Beob-
achters, dass A wahr ist. In beiden Interpretationen müssen die Axiome 1 bis 3 gelten. Der
Unterschied wird erst bei der statistischen Inferenz relevant und führt zu zwei Schulen: der
frequentistischen und der Bayesschen Statistik (siehe Kapitel 11).

Aus den Axiomen folgen viele Eigenschaften:

Satz 2
Für beliebige Ereignisse A,B gilt:

1. P (∅) = 0,

2. A ⊂ B ⇒ P (A) ≤ P (B),

3. 0 ≤ P (A) ≤ 1,

4. P (Ac) = 1− P (A),

5. A ∩B = ∅ ⇒ P (A ∪B) = P (A) + P (B).

Beweis. (1) Wähle A1 = Ω und Ai = ∅ für i ≥ 2. Da A1, A2, . . . disjunkt sind, folgt mit Axiom 3:

P (Ω) = P

(
∞⋃
i=1

Ai

)
= P (Ω) +

∞∑
i=2

P (∅).

Mit Axiom 2 ist P (Ω) = 1, also 1 = 1 +
∑∞

i=2 P (∅), woraus P (∅) = 0 folgt.
(2) Ist A ⊂ B, so ist B = A ∪ (B ∩ Ac) eine disjunkte Vereinigung. Mit Axiom 3:

P (B) = P (A) + P (B ∩ Ac) ≥ P (A),

da P (B ∩ Ac) ≥ 0 nach Axiom 1.
(3) Aus ∅ ⊂ A ⊂ Ω folgt mit (1), (2) und Axiom 2: 0 = P (∅) ≤ P (A) ≤ P (Ω) = 1.
(4) Da A und Ac disjunkt sind mit A ∪ Ac = Ω, folgt:

1 = P (Ω) = P (A ∪ Ac) = P (A) + P (Ac).
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(5) Folgt direkt aus Axiom 3 für n = 2.

Lemma 3
Für beliebige Ereignisse A und B gilt

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Beweis. Wir zerlegen A ∪ B = (A ∩ Bc) ∪ (A ∩ B) ∪ (Ac ∩ B) in disjunkte Mengen. Durch
wiederholte Anwendung der Additivität ergibt sich

P (A ∪B) = P (A ∩Bc) + P (A ∩B) + P (Ac ∩B)

= P (A ∩Bc) + P (A ∩B) + P (Ac ∩B) + P (A ∩B)− P (A ∩B)

= P (A) + P (B)− P (A ∩B).

Korollar 4
[Bonferroni-Ungleichung] Für beliebige Ereignisse A und B gilt

P (A ∩B) ≥ P (A) + P (B)− 1.

Beweis. Aus dem vorherigen Lemma folgt P (A∩B) = P (A)+P (B)−P (A∪B). Da P (A∪B) ≤
1, ergibt sich die Behauptung.

Korollar 5
[Unionsschranke] Für beliebige Ereignisse A1, . . . , An gilt

P

(
n⋃

i=1

Ai

)
≤

n∑
i=1

P (Ai).

Beweis. Beweis durch Induktion. Für n = 1 ist die Aussage trivial. Für n = 2 folgt aus dem
Lemma:

P (A1 ∪ A2) = P (A1) + P (A2)− P (A1 ∩ A2) ≤ P (A1) + P (A2),

da P (A1 ∩ A2) ≥ 0. Sei die Aussage für n− 1 bewiesen. Dann ist

P

(
n⋃

i=1

Ai

)
= P

((
n−1⋃
i=1

Ai

)
∪ An

)
≤ P

(
n−1⋃
i=1

Ai

)
+ P (An)

≤
n−1∑
i=1

P (Ai) + P (An) =
n∑

i=1

P (Ai).
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Beispiel 1.3.1

Zweimaliger Münzwurf. Sei H1 das Ereignis „"Kopf beim ersten Wurf und H2 „"Kopf
beim zweiten Wurf. Sind alle Ergebnisse gleichwahrscheinlich, so ist

P (H1 ∪H2) = P (H1) + P (H2)− P (H1 ∩H2) =
1

2
+

1

2
− 1

4
=

3

4
.

Satz 6
[Stetigkeit von Wahrscheinlichkeiten] Gilt An → A, so folgt P (An) → P (A) für n→ ∞.

Beweis. Sei A1 ⊂ A2 ⊂ · · · monoton wachsend und A = limn→∞An =
⋃∞

i=1Ai. Definiere
B1 = A1, B2 = {ω ∈ Ω : ω ∈ A2, ω /∈ A1}, B3 = {ω : ω ∈ A3, ω /∈ A2, ω /∈ A1}, usw. Dann sind
B1, B2, . . . disjunkt, An =

⋃n
i=1Bi und

⋃∞
i=1Bi =

⋃∞
i=1Ai. Nach Axiom 3 gilt

P (An) = P

(
n⋃

i=1

Bi

)
=

n∑
i=1

P (Bi)

und somit

lim
n→∞

P (An) = lim
n→∞

n∑
i=1

P (Bi) =
∞∑
i=1

P (Bi) = P

(
∞⋃
i=1

Bi

)
= P (A).

1.4 Wahrscheinlichkeit auf endlichen Ergebnisräumen

Sei Ω = {ω1, . . . , ωn} endlich. Beim zweimaligen Würfelwurf hat Ω etwa 36 Elemente: Ω =
{(i, j) : i, j ∈ {1, . . . , 6}}. Sind alle Ergebnisse gleichwahrscheinlich, so ist P (A) = |A|/36,
wobei |A| die Anzahl der Elemente von A bezeichnet.

Bei endlichem Ω mit gleichwahrscheinlichen Ergebnissen gilt die Gleichverteilung:

P (A) =
|A|
|Ω|

.

Um Wahrscheinlichkeiten zu berechnen, müssen wir Elemente zählen – sogenannte
kombinatorische Methoden. Einige wichtige Fakten:

Die Anzahl der Anordnungen von n Objekten ist n! = n(n− 1)(n− 2) · · · 3 · 2 · 1. Definiti-
onsgemäß ist 0! = 1. Ferner ist (

n

k

)
=

n!

k!(n− k)!

die Anzahl der Möglichkeiten, k Objekte aus n auszuwählen („"n über k). Beispiel: In einer
Klasse von 20 Personen gibt es(

20

3

)
=

20!

3! · 17!
=

20× 19× 18

3× 2× 1
= 1140

Möglichkeiten, ein 3-Personen-Komitee zu bilden.
Eigenschaften: (

n

0

)
=

(
n

n

)
= 1,

(
n

k

)
=

(
n

n− k

)
.
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1.5 Unabhängige Ereignisse

Wirft man zweimal eine faire Münze, ist die Wahrscheinlichkeit für zweimal Kopf gleich 1
2
× 1

2
.

Wir multiplizieren die Wahrscheinlichkeiten, weil wir die Würfe als unabhängig betrachten.

Definition 1
Zwei Ereignisse A und B sind unabhängig, falls

P (A ∩B) = P (A) · P (B),

und wir schreiben A ⊥ B. Eine Menge von Ereignissen {Ai : i ∈ I} ist unabhängig,
falls für jede endliche Teilmenge J ⊂ I gilt

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P (Ai).

Sind A und B nicht unabhängig, schreiben wir A ̸⊥ B.

Unabhängigkeit kann auf zwei Arten entstehen: Entweder nehmen wir explizit an, dass
Ereignisse unabhängig sind (z. B. beim wiederholten Münzwurf), oder wir verifizieren P (A ∩
B) = P (A) · P (B).

Bemerkung 1.5.1. Sind A und B disjunkt mit P (A), P (B) > 0, so können sie nicht unabhän-
gig sein, denn P (A) · P (B) > 0, aber P (A ∩B) = P (∅) = 0.

Beispiel 1.5.1

Faire Münze, 10 Würfe. Sei A = „mindestens ein Kopf und Tj das Ereignis „SZahl beim
j-ten Wurf. Dann ist

P (A) = 1− P (Ac) = 1− P (T1 ∩ · · · ∩ T10) = 1−
10∏
j=1

P (Tj) = 1−
(
1

2

)10

≈ 0,999.
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Beispiel 1.5.2

Zwei Personen versuchen abwechselnd, einen Basketball in den Korb zu werfen. Per-
son 1 trifft mit Wahrscheinlichkeit 1/3, Person 2 mit 1/4. Wie groß ist die Wahrschein-
lichkeit, dass Person 1 zuerst trifft?
Sei E das gesuchte Ereignis und Aj das Ereignis „ërster Treffer im j-ten Versuch.
Person 1 wirft in den Versuchen 1, 3, 5, . . . , Person 2 in 2, 4, 6, . . . . Es ist

P (E) = P (A1) + P (A3) + P (A5) + · · ·

=
1

3
+

(
2

3
· 3
4

)
· 1
3
+

(
2

3
· 3
4

)2

· 1
3
+ · · ·

=
1

3

∞∑
j=0

(
1

2

)j

=
1

3
· 1

1− 1/2
=

2

3
.

1.6 Bedingte Wahrscheinlichkeit

Definition 1
Falls P (B) > 0, ist die bedingte Wahrscheinlichkeit von A gegeben B definiert als

P (A | B) =
P (A ∩B)

P (B)
.

Lemma 2
[Produktregel] Für Ereignisse A1, . . . , An mit P (A1 ∩ · · · ∩ An−1) > 0 gilt

P (A1 ∩ · · · ∩ An) = P (A1) · P (A2 | A1) · P (A3 | A1 ∩ A2) · · ·P (An | A1 ∩ · · · ∩ An−1).

Beweis. Durch wiederholte Anwendung der Definition der bedingten Wahrscheinlichkeit:

P (A1 ∩ A2) = P (A2 | A1) · P (A1),

P (A1 ∩ A2 ∩ A3) = P (A3 | A1 ∩ A2) · P (A1 ∩ A2)

= P (A3 | A1 ∩ A2) · P (A2 | A1) · P (A1).

Fortsetzen dieser Argumentation liefert die Behauptung.

Für festes B mit P (B) > 0 definiert P (· | B) ein neues Wahrscheinlichkeitsmaß auf Ω.
Insbesondere gelten die Axiome:

1. P (A | B) ≥ 0 für alle A,

2. P (Ω | B) = 1,

3. Sind A1, A2, . . . disjunkt, so ist P (
⋃∞

i=1Ai | B) =
∑∞

i=1 P (Ai | B).
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Beispiel 1.6.1

[Medizinischer Test] Ein Test für eine Krankheit D hat Ergebnisse + (positiv) und −
(negativ). Die Sensitivität ist P (+ | D) = 0,993, die Spezifität P (− | Dc) = 0,9999. Die
Prävalenz sei P (D) = 0,0001. Wie groß ist P (D | +)?
Nach der Definition der bedingten Wahrscheinlichkeit ist

P (D | +) =
P (D ∩+)

P (+)
=
P (+ | D) · P (D)

P (+)
.

Mit dem Gesetz der totalen Wahrscheinlichkeit (Satz 1.7) gilt

P (+) = P (+ | D) · P (D) + P (+ | Dc) · P (Dc)

= 0,993× 0,0001 + 0,0001× 0,9999 = 0,00019992.

Somit ist
P (D | +) =

0,993× 0,0001

0,00019992
≈ 0,497.

Trotz hoher Sensitivität und Spezifität ist die Wahrscheinlichkeit, tatsächlich krank zu
sein, nur etwa 50 %, da die Krankheit selten ist.

Lemma 3
Sind A und B unabhängig, so gilt P (A | B) = P (A). Zudem sind dann auch A und Bc,
Ac und B sowie Ac und Bc unabhängig.

Beweis. Aus A ⊥ B folgt P (A ∩B) = P (A) · P (B), also

P (A | B) =
P (A ∩B)

P (B)
=
P (A) · P (B)

P (B)
= P (A).

Für die Unabhängigkeit von A und Bc schreiben wir A = (A∩B)∪ (A∩Bc) als disjunkte
Vereinigung:

P (A ∩Bc) = P (A)− P (A ∩B) = P (A)− P (A) · P (B)

= P (A)(1− P (B)) = P (A) · P (Bc).

Also ist A ⊥ Bc. Analog zeigt man Ac ⊥ B.

Für Ac ⊥ Bc wenden wir das eben Bewiesene auf Ac und B an: Da A ⊥ B, ist auch
Ac ⊥ B, und daraus folgt Ac ⊥ Bc.
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Beispiel 1.6.2

Ziehen zweier Karten ohne Zurücklegen. Sei A = „ërste Karte ist Herz-As und B =
„ßweite Karte ist Herz-2. Dann ist

P (B | A) = 1

51
, P (B | Ac) =

1

51
.

Überraschenderweise ist P (B | A) = P (B | Ac), also P (B | A) = P (B). Somit sind A
und B unabhängig.

1.7 Satz von Bayes

Satz 1
[Gesetz der totalen Wahrscheinlichkeit] Sei A1, . . . , Ak eine Zerlegung von Ω mit
P (Ai) > 0 für alle i. Dann gilt für jedes Ereignis B

P (B) =
k∑

i=1

P (B | Ai) · P (Ai).

Beweis. Definiere Cj = B ∩ Aj. Dann sind C1, . . . , Ck disjunkt und B =
⋃k

j=1Cj. Somit

P (B) =
∑
j

P (Cj) =
∑
j

P (B ∩ Aj) =
∑
j

P (B | Aj) · P (Aj).

Satz 2
[Satz von Bayes] Sei A1, . . . , Ak eine Zerlegung von Ω mit P (Ai) > 0 für alle i. Falls
P (B) > 0, so gilt für jedes i ∈ {1, . . . , k}

P (Ai | B) =
P (B | Ai) · P (Ai)∑k
j=1 P (B | Aj) · P (Aj)

.

Bemerkung 1.7.1. Wir nennen P (Ai) die A-priori-Wahrscheinlichkeit (engl. prior probabi-
lity ) und P (Ai | B) die A-posteriori-Wahrscheinlichkeit (engl. posterior probability ).

Beweis. Zweimalige Anwendung der Definition der bedingten Wahrscheinlichkeit liefert

P (Ai | B) =
P (Ai ∩B)

P (B)
=
P (B | Ai) · P (Ai)

P (B)
.

Mit dem Gesetz der totalen Wahrscheinlichkeit folgt die Behauptung.
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Korollar 3
[Bayes für zwei Ereignisse] Sind A und B Ereignisse mit P (A), P (B) > 0, so gilt

P (A | B) =
P (B | A) · P (A)

P (B | A) · P (A) + P (B | Ac) · P (Ac)
.

Beweis. Spezialfall des Satzes von Bayes mit der Zerlegung {A,Ac}.

Beispiel 1.7.1

[E-Mail-Klassifikation] Ich teile E-Mails in drei Kategorien: A1 = SSpam", A2 = niedrige
Priorität", A3 = „"hohe Priorität. Aus Erfahrung weiß ich: P (A1) = 0,7, P (A2) = 0,2,
P (A3) = 0,1. Sei B = „Ë-Mail enthält Wort „frei“. Die bedingten Wahrscheinlichkeiten
sind:

P (B | A1) = 0,9, P (B | A2) = 0,01, P (B | A3) = 0,01.

Erhalte ich eine E-Mail mit dem Wort „frei, wie groß ist die Wahrscheinlichkeit, dass
es Spam ist? Nach Bayes gilt

P (A1 | B) =
P (B | A1) · P (A1)

P (B | A1) · P (A1) + P (B | A2) · P (A2) + P (B | A3) · P (A3)

=
0,9× 0,7

0,9× 0,7 + 0,01× 0,2 + 0,01× 0,1

=
0,63

0,633
≈ 0,995.

Die E-Mail ist mit hoher Wahrscheinlichkeit Spam.

1.8

Ist der Ergebnisraum Ω groß (z. B. Ω = R), kann man nicht jedem beliebigen Ereignis A ⊂ Ω
eine Wahrscheinlichkeit zuordnen. Stattdessen beschränkt man sich auf eine Klasse von
Mengen, die eine σ-Algebra (oder σ-Feld) bildet.

Definition 1
Eine Familie A von Teilmengen von Ω heißt σ-Algebra, falls gilt:

1. ∅ ∈ A,

2. Ist A ∈ A, so auch Ac ∈ A,

3. Sind A1, A2, . . . ∈ A, so ist
⋃∞

i=1Ai ∈ A.

Die Mengen in A heißen messbar. Das Paar (Ω,A) nennt man messbarer Raum. Ist P
ein Wahrscheinlichkeitsmaß auf A, so heißt (Ω,A, P ) Wahrscheinlichkeitsraum.

Ist Ω = R, wählt man A als kleinste σ-Algebra, die alle offenen Teilmengen enthält – die
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sogenannte Borel-σ-Algebra.



Kapitel 2

Zufallsvariablen

2.1 Einführung

In der Wahrscheinlichkeitstheorie arbeiten wir zunächst mit einem abstrakten Modell eines
Zufallsexperiments:

• Der Ergebnisraum (auch Stichprobenraum, Sample Space) Ω ist die Menge aller
möglichen Ergebnisse des Experiments.
Beispiel Würfelwurf: Ω = {1, 2, 3, 4, 5, 6}.

• Ereignisse sind Teilmengen von Ω, für die wir Wahrscheinlichkeiten definieren können.
Beispiel: „gerade Augenzahl“ = {2, 4, 6}.

Das Modell ist rein mathematisch-abstrakt. Die Elemente von Ω müssen nicht einmal
Zahlen sein (z. B. beim Münzwurf: Ω = {Kopf,Zahl} oder beim Wetter: Ω = {Sonne,Regen,Schnee, . . . }).

In Statistik und Data Mining haben wir jedoch konkrete Daten – also Zahlen, Katego-
rien, Texte, Bilder usw., mit denen wir rechnen, visualisieren und Muster finden wollen.

Die Zufallsvariable ist genau das Bindeglied, das die abstrakte Wahrscheinlichkeits-
theorie mit den realen Daten verbindet.

Was ist eine Zufallsvariable?

Eine Zufallsvariable X ist eine messbare Funktion, die jedem möglichen Ereignis ω ∈ Ω
einen beobachtbaren Wert zuordnet:

X : Ω → R (oder in einen anderen messbaren Raum)

Sie übersetzt also das zufällige Ereignis in etwas Konkretes, das wir messen oder be-
obachten können.

Beispiel 2.1.1

Würfelwurf
Ergebnisraum Ω = {1, 2, 3, 4, 5, 6} (hier sind die Elemente schon Zahlen, aber das ist
Zufall).
Zufallsvariable X(ω) = ω → X ist einfach die Augenzahl.
Daten: Wenn wir 100-mal würfeln, erhalten wir eine Liste von beobachteten Werten
x1, x2, . . . , x100 (z. B. 3, 5, 1, . . . ). Das sind Realisationen der Zufallsvariablen X.

17
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Beispiel 2.1.2

Münzwurf
Ω = {Kopf,Zahl}
Zufallsvariable X: Kopf → 1, Zahl → 0
Jetzt können wir mit Zahlen rechnen (Erwartungswert, Varianz usw.).
Daten: Eine Sequenz von 0en und 1en.

Beispiel 2.1.3

Körpergröße in einer Population
Das „Experiment“ ist: „wähle zufällig eine Person aus“.
Ω ist extrem komplex (alle genetischen, umweltbedingten Faktoren usw.).
Zufallsvariable X(ω) = Körpergröße dieser Person in cm.
Wir beobachten nur die Werte von X (z. B. 171, 168, 182, . . . cm). Den zugrunde
liegenden Ergebnisraum Ω sehen wir nie direkt.

Warum ist die Zufallsvariable so wichtig für Statistik/Data
Mining?

• Sie ermöglicht es, Wahrscheinlichkeiten auf die Daten zu übertragen:
P (X ≤ 170) statt P (Ereignis „Person ≤ 170 cm“).

• Alle statistischen Konzepte (Erwartungswert, Varianz, Verteilung, Konfidenzintervalle,
Hypothesentests, Regressionsmodelle, Clustering, . . . ) sind auf Zufallsvariablen defi-
niert.

• Unsere Daten sind nichts anderes als beobachtete Realisationen (Samples) einer
oder mehrerer Zufallsvariablen.
Wir modellieren sie meist als unabhängig und identisch verteilt (i.i.d.).

Zusammengefasst:
Der Ergebnisraum und die Ereignisse liefern das theoretische Fundament der Wahrschein-
lichkeit. Die Zufallsvariable ist die Brücke, die dieses Fundament mit den tatsächlichen
Daten verbindet, mit denen Statistik und Data Mining arbeiten.

Statistik und Data Mining befassen sich mit Daten. Wie verbinden wir Ergebnisräume
und Ereignisse mit Daten? Das Bindeglied ist die Zufallsvariable.

Definition 1
Eine Zufallsvariable ist eine Abbildung

X : Ω → R,

die jedem Ergebnis ω eine reelle Zahl X(ω) zuordnet.

Ab einem gewissen Punkt in den meisten Wahrscheinlichkeitsvorlesungen wird der Er-
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gebnisraum kaum noch erwähnt und wir arbeiten direkt mit Zufallsvariablen. Man sollte je-
doch im Hinterkopf behalten, dass der Ergebnisraum stets vorhanden ist.

Beispiel 2.1.4

Zehnmaliger Münzwurf. Sei X(ω) die Anzahl der Köpfe in der Sequenz ω. Beispiel: Ist
ω = KKZKKZKKZZ, so ist X(ω) = 6.

Beispiel 2.1.5

Sei Ω = {(x, y) : x2+y2 ≤ 1} die Einheitskreisscheibe. Wählen wir zufällig einen Punkt
aus Ω. Ein typisches Ergebnis hat die Form ω = (x, y). Beispiele für Zufallsvariablen
sind X(ω) = x, Y (ω) = y, Z(ω) = x+ y und W (ω) = x2 + y2.

Für eine Zufallsvariable X und eine Teilmenge A ⊂ R definieren wir X−1(A) = {ω ∈ Ω :
X(ω) ∈ A} und setzen

P (X ∈ A) = P (X−1(A)) = P ({ω ∈ Ω : X(ω) ∈ A}),
P (X = x) = P (X−1(x)) = P ({ω ∈ Ω : X(ω) = x}).

Beachten Sie: X bezeichnet die Zufallsvariable, x einen konkreten Wert.

Beispiel 2.1.6

Zweimaliger Münzwurf, X = Anzahl der Köpfe. Dann ist P (X = 0) = P ({ZZ}) = 1/4,
P (X = 1) = P ({KZ,ZK}) = 1/2 und P (X = 2) = P ({KK}) = 1/4. Zusammenfas-
sung:

ω P ({ω}) X(ω)

ZZ 1/4 0
ZK 1/4 1
KZ 1/4 1
KK 1/4 2

x P (X = x)

0 1/4
1 1/2
2 1/4

2.2 Verteilungsfunktionen und Wahrscheinlichkeitsfunktio-
nen

Definition 1
Die kumulative Verteilungsfunktion (engl. cumulative distribution function, cdf ) ist
die Funktion FX : R → [0, 1] definiert durch

FX(x) = P (X ≤ x).



20 KAPITEL 2. ZUFALLSVARIABLEN

Die cdf enthält alle Informationen über die Zufallsvariable. Oft schreiben wir kurz F statt
FX .

Beispiel 2.2.1

Zweimaliger fairer Münzwurf,X = Anzahl Köpfe. Dann ist P (X = 0) = P (X = 2) = 1/4
und P (X = 1) = 1/2. Die Verteilungsfunktion lautet

FX(x) =


0 x < 0,

1/4 0 ≤ x < 1,

3/4 1 ≤ x < 2,

1 x ≥ 2.

Die Funktion ist rechtsseitig stetig, monoton wachsend und für alle x definiert, obwohl
X nur Werte 0, 1, 2 annimmt. Warum ist FX(1,4) = 0,75?

Satz 2
Haben X die cdf F und Y die cdf G mit F (x) = G(x) für alle x, so ist P (X ∈ A) =
P (Y ∈ A) für alle A.

Beweis. Es genügt zu zeigen, dass P (X ∈ A) = P (Y ∈ A) für alle Intervalle A gilt, da sich
alle Borel-Mengen aus Intervallen erzeugen lassen. Für ein Intervall A = (−∞, x] ist per
Definition

P (X ∈ A) = F (x) = G(x) = P (Y ∈ A).

Durch Mengendifferenzen und abzählbare Vereinigungen solcher Intervalle folgt die Aussa-
ge für alle Borel-Mengen.

Satz 3
Eine Funktion F : R → [0, 1] ist genau dann die kumulative Verteilungsfunktion (CDF)
eines Wahrscheinlichkeitsmaßes P auf (R,B(R)), d. h.

F (x) = P ((−∞, x]),

wenn sie die folgenden Eigenschaften erfüllt:

1. Monoton nichtfallend: x1 < x2 =⇒ F (x1) ≤ F (x2),

2. Normierung: limx→−∞ F (x) = 0, limx→∞ F (x) = 1,

3. Rechtsstetig: F (x) = limy↓x F (y) für alle x ∈ R.

Beweis. „⇒“ (CDF ⇒ Eigenschaften).
Sei F (x) = P ((−∞, x]) für ein Wahrscheinlichkeitsmaß P .

• Monotonie: x1 < x2 =⇒ (−∞, x1] ⊂ (−∞, x2] =⇒ F (x1) ≤ F (x2).
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• Normierung: limx→∞ F (x) = P (R) = 1 und limx→−∞ F (x) = P (∅) = 0 (da
⋂

n(−∞, xn] =
∅ für xn → −∞).

• Rechtsstetigkeit: limy↓x F (y) = limy↓x P ((−∞, y]) = P ((−∞, x]) (Stetigkeit von oben für
die abnehmende Folge (−∞, y], y ↓ x).

„⇐“ (Eigenschaften ⇒ existiert eindeutiges P ).
Definiere für a < b

µ((a, b]) := F (b)− F (a).

(Die Monotonie sichert µ ≥ 0; für a = −∞ bzw. b = ∞ verwenden wir die Grenzwerte.)
Die Menge S = {(−∞, x] : x ∈ R} ∪ {(a, b] : a < b} ∪ {∅,R} ist ein Semiring, und µ ist auf

disjunkten endlichen Vereinigungen additiv (folgt aus Monotonie und Rechtsstetigkeit).
Wegen der Rechtsstetigkeit ist µ sogar σ-additiv auf dem von S erzeugten Ring (das

ist der kritische Schritt: die Rechtsstetigkeit verhindert „Massensprünge“ und garantiert die
σ-Additivität bei abzählbaren disjunkten Vereinigungen von Halbintervallen).

Nach dem Carathéodoryschen Erweiterungssatz existiert eine eindeutige Erweiterung
von µ zu einem Wahrscheinlichkeitsmaß P auf der σ-Algebra B(R).

Schließlich gilt per Konstruktion

P ((−∞, x]) = lim
y↓x

µ((−∞, y]) = lim
y↓x

F (y) = F (x)

(Rechtsstetigkeit), also ist F die CDF von P .
Eindeutigkeit folgt daraus, dass die Halbintervalle (−∞, x] ein π-System sind, das die

Borel-σ-Algebra erzeugt, und zwei Maße, die auf einem erzeugenden π-System überein-
stimmen, sind gleich (Eindeutigkeitssatz für Maße).

Motivation

Das äußere Maß (outer measure) ist ein zentrales Konzept der Maßtheorie, das es ermög-
licht, aus einer „vorbereiteten“ Mengenfunktion (z. B. einem Prämaß auf einem Ring oder
Semiring) eine Mengenfunktion auf der gesamten Potenzmenge zu konstruieren. Es dient
als Zwischenschritt im Carathéodoryschen Erweiterungssatz, um ein echtes Maß auf einer
σ-Algebra zu erhalten (z. B. das Lebesgue-Maß oder Wahrscheinlichkeitsmaße aus CDFs).

Definition 4

[Äußeres Maß aus einem Prämaß] Sei X eine Menge und R ein Ring (oder Semiring)
von Teilmengen von X. Sei µ0 : R → [0,∞] ein Prämaß (d. h. µ0(∅) = 0 und σ-additiv
auf disjunkten Vereinigungen in R).
Das zugehörige äußere Maß µ∗ : P(X) → [0,∞] ist definiert durch

µ∗(E) := inf

{
∞∑
n=1

µ0(An)

∣∣∣∣∣ An ∈ R, E ⊂
∞⋃
n=1

An

}
,

wobei das Infimum über alle abzählbaren Überdeckungen von E durch Mengen aus
R genommen wird. (Falls keine solche Überdeckung existiert, setzt man µ∗(E) = ∞.
Die leere Summe ist 0, also µ∗(∅) = 0.)
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Allgemeiner kann man ein äußeres Maß direkt axiomatisch definieren:

Definition 5

[Äußeres Maß (axiomatisch)] Eine Funktion µ∗ : P(X) → [0,∞] heißt äußeres Maß,
wenn

1. µ∗(∅) = 0,

2. Monotonie: E ⊂ F =⇒ µ∗(E) ≤ µ∗(F ),

3. abzählbare Subadditivität: Für beliebige En ⊂ X gilt

µ∗

(
∞⋃
n=1

En

)
≤

∞∑
n=1

µ∗(En).

Wichtige Eigenschaften

Korollar 6
Das aus einem Prämaß µ0 konstruierte µ∗ ist tatsächlich ein äußeres Maß und erfüllt
zusätzlich:

• µ∗ erweitert µ0: Für alle A ∈ R gilt µ∗(A) = µ0(A).

• Falls µ0 σ-endlich ist, hat µ∗ weitere Regularitätseigenschaften.

Bemerkungen

• Das äußere Maß ist im Allgemeinen nicht additiv, sondern nur subadditiv. Additivität
gilt nur für messbare Mengen (im Sinne von Carathéodory).

• Beispiel: Das Lebesgue-äußere Maß auf Rd entsteht aus der Längen-/Volumenfunktion
auf Quadern/Halbintervallen.

• Im Kontext von Wahrscheinlichkeitsmaßen: Aus der durch eine CDF F definierten
µ0((a, b]) = F (b) − F (a) entsteht ein äußeres Maß, das dann via Carathéodory zu
einem Wahrscheinlichkeitsmaß auf den Borelmengen eingeschränkt wird.
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Der Carathéodorysche Erweiterungssatz

Lemma 7
[Carathéodoryscher Erweiterungssatz] Sei µ∗ ein äußeres Maß auf X. Eine Menge
A ⊂ X heißt µ∗-messbar (im Sinne von Carathéodory), wenn für alle S ⊂ X gilt

µ∗(S) = µ∗(S ∩ A) + µ∗(S ∩ Ac).

Dann gilt:

1. Die Menge M aller µ∗-messbaren Mengen ist eine σ-Algebra.

2. Die Einschränkung µ := µ∗|M ist ein vollständiges Maß auf M.

3. Falls µ0 ein Prämaß auf einem Ring R war und µ∗ daraus konstruiert wurde, so
ist µ eine Erweiterung von µ0 (d. h. µ|R = µ0).

4. Falls zusätzlich µ0 σ-endlich ist (d. h. X =
⋃

nXn mit µ0(Xn) < ∞), so ist die
Erweiterung µ auf der von R erzeugten σ-Algebra σ(R) eindeutig.

Bemerkungen

• Der kritische Punkt ist der Nachweis, dass M eine σ-Algebra ist (insbesondere σ-
Additivität der messbaren Mengen). Dies erfordert die Monotonie und Subadditivität
des äußeren Maßes.

• Für das Lebesgue-Maß auf Rd: Starte mit µ0((a, b]) = ℓ(b)− ℓ(a) (Länge) auf dem Se-
miring der Halbintervalle, konstruiere µ∗, wende Carathéodory an → Lebesgue-Maß.

• Im Kontext von Wahrscheinlichkeitsmaßen auf R (wie im CDF-Beweis): Das durch
F (b) − F (a) definierte µ auf Halbintervallen ist ein Prämaß (wegen Rechtsstetigkeit
σ-additiv), und der Satz liefert die Erweiterung auf die Borel-σ-Algebra.

• Die σ-Endlichkeit sorgt für Eindeutigkeit; ohne sie kann es mehrere Erweiterungen
geben.

Der vollständige Beweis (insbesondere der σ-Algebra-Nachweis) findet sich in Standard-
werken wie Billingsley Probability and Measure, Bauer Wahrscheinlichkeitstheorie oder El-
strodt Maß- und Integrationstheorie.

Diskrete Zufallsvariablen

Definition 8
X ist diskret, falls sie abzählbar viele Werte {x1, x2, . . .} annimmt. Die Wahrschein-
lichkeitsfunktion (engl. probability mass function, pmf ) ist

fX(x) = P (X = x).
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Lemma 9
Für eine diskrete Zufallsvariable X mit Wertebereich {x1, x2, . . .} gilt:

1.
∑

i fX(xi) = 1,

2. FX(x) = P (X ≤ x) =
∑

xi≤x fX(xi).

Beweis. (1) Die Ereignisse {X = xi} für i = 1, 2, . . . bilden eine Partition von Ω, d. h. sie sind
paarweise disjunkt und ihre Vereinigung ist Ω. Mit Axiom 3 der Wahrscheinlichkeitstheorie
folgt:

1 = P (Ω) = P

(
∞⋃
i=1

{X = xi}

)
=

∞∑
i=1

P (X = xi) =
∞∑
i=1

fX(xi).

(2) Das Ereignis {X ≤ x} ist die disjunkte Vereinigung aller Ereignisse {X = xi} mit
xi ≤ x. Mit Axiom 3 folgt:

FX(x) = P (X ≤ x) = P

(⋃
xi≤x

{X = xi}

)
=
∑
xi≤x

P (X = xi) =
∑
xi≤x

fX(xi).

Visuelle Struktur der Beweisführung

Definition
X diskret

fX(x) = P (X = x)

Eigenschaft 1
{X = xi} sind

paarweise disjunkt

Eigenschaft 2⋃
i{X = xi} = Ω

Axiom 3
Additivität für

disjunkte
Ereignisse

Resultat 1∑
i fX(xi) = 1

Resultat 2
FX(x) =∑
xi≤x fX(xi)

Partition Vollständig
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Beziehung zwischen pmf und cdf

PMF: fX(x)
fX(xi) = P (X = xi)

CDF: FX(x)
FX(x) = P (X ≤ x)

Summation

Differenzen

Werte an einzelnen
Punkten xi

Kumulative Summe∑
xi≤x fX(xi)

Axiomatische Struktur

Axiom 3
Additivität

Disjunkte
Ereignisse
{X = xi}

∑
i fX(xi) = 1

Disjunkte
Vereinigung
{X ≤ x}

FX(x) =
∑

xi≤x fX(xi)
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Beispiel 2.2.2

2.2 Zweimaliger fairer Münzwurf, X = Anzahl der Köpfe.
Wertebereich: {0, 1, 2}
PMF:

x 0 1 2
fX(x)

1
4

1
2

1
4

Verifikation von Lemma (1):∑
i

fX(xi) =
1

4
+

1

2
+

1

4
= 1 ✓

CDF aus Lemma (2):

FX(x) =


0 x < 0
1
4

0 ≤ x < 1
3
4

1 ≤ x < 2

1 x ≥ 2

Berechnung:

FX(0) =
∑
xi≤0

fX(xi) = fX(0) =
1

4

FX(1) =
∑
xi≤1

fX(xi) = fX(0) + fX(1) =
1

4
+

1

2
=

3

4

FX(2) =
∑
xi≤2

fX(xi) = fX(0) + fX(1) + fX(2) = 1

Visualisierung: PMF und CDF

x

fX(x)

0 1 2

1
4

1
2

PMF

x

FX(x)

0 1 2

1
4

3
4

1

CDF
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Stetige Zufallsvariablen

Definition 10
X ist stetig, falls es eine Funktion fX gibt, sodass fX(x) ≥ 0 für alle x,

∫∞
−∞ fX(x) dx =

1 und für jedes A ⊂ R gilt

P (X ∈ A) =

∫
A

fX(x) dx.

Die Funktion fX heißt Wahrscheinlichkeitsdichtefunktion oder Dichte (engl. pro-
bability density function, pdf ).

Für stetige Zufallsvariablen gilt P (X = x) = 0 für alle x und

FX(x) =

∫ x

−∞
fX(t) dt, fX(x) = F ′

X(x)

an allen Stellen, wo FX differenzierbar ist.

Beispiel 2.2.3

Sei X mit pdf

fX(x) =

{
1 0 < x < 1,

0 sonst.

Dies ist die Gleichverteilung auf (0, 1), geschrieben X ∼ Uniform(0, 1). Die cdf ist

FX(x) =


0 x < 0,

x 0 ≤ x ≤ 1,

1 x > 1.

Beispiel 2.2.4

Sei fX(x) = 3x2 für 0 < x < 1 und fX(x) = 0 sonst. Dann ist

FX(x) =

∫ x

−∞
fX(t) dt =


0 x < 0,

x3 0 ≤ x ≤ 1,

1 x > 1.

Ferner ist P (X ∈ [0,1, 0,5]) =
∫ 0,5

0,1
3x2 dx = [x3]0,50,1 = 0,124.
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Lemma 11
Sei F die cdf einer Zufallsvariable X. Dann gilt:

1. P (X = x) = F (x)− limy↑x F (y),

2. P (x < X ≤ y) = F (y)− F (x),

3. P (X > x) = 1− F (x),

4. Falls X stetig ist, gilt P (X = x) = 0 für alle x.

Definition 12
Sei X eine Zufallsvariable mit cdf F . Das inverse cdf oder Quantilfunktion ist

F−1(q) = inf{x : F (x) > q}

für q ∈ [0, 1]. Falls F streng monoton wachsend und stetig ist, dann ist F−1(q) die
eindeutige Lösung von F (x) = q.

2.3 Wichtige diskrete Verteilungen

Punktmasse (Dirac-Verteilung)

Definition 1
Eine Zufallsvariable X hat eine Punktmasse-Verteilung (auch Dirac-Verteilung),
geschrieben X ∼ δa, falls

P (X = a) = 1.

Die gesamte Wahrscheinlichkeitsmasse ist auf den einzelnen Punkt a konzentriert.
PMF:

fX(x) =

{
1 falls x = a,

0 sonst.

CDF:

FX(x) =

{
0 falls x < a,

1 falls x ≥ a.
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Beispiel 2.3.1

Eine Zufallsvariable X, die den Wert 5 mit Sicherheit annimmt, also X ∼ δ5.

• Die „zufällige"Wahl einer festen Zahl

• Eine Konstante als Zufallsvariable betrachtet

• P (X = 5) = 1, P (X ̸= 5) = 0

Eigenschaften
• Erwartungswert: E[X] = a

• Varianz: Var(X) = 0 (keine Streuung!)

• Entropie: H(X) = 0 (keine Unsicherheit)

• Grenzfall: Deterministische Variable (keine echte Zufälligkeit)
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Visualisierung: PMF und CDF für δ5

x

fX(x)

2 3 4 5 6

1

0

PMF: fX(x)

Gesamte
Masse

x

FX(x)

2 3 4 5 6

1

0

CDF: FX(x)

Sprung

Konzeptuelle Darstellung

X ∼ δa
Punktmasse

bei a

Deterministisch
P (X =
a) = 1

Keine
Streuung

Var(X) = 0

Erwartungswert
E[X] = a

Keine
Unsicherheit
H(X) = 0

Vergleich: Punktmasse vs. andere diskrete Verteilungen

x

f(x)

a

Punktmasse
δa

x

f(x)

0 1
Bernoulli
p = 0.6

x

f(x)

Diskret Uniform
{1, 2, 3, 4, 5}
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Mathematische Eigenschaften im Detail

Eigenschaft Wert für δa
Träger (Support) {a}
Erwartungswert E[X] = a
Varianz Var(X) = 0
Standardabweichung σX = 0
Schiefe (Skewness) Nicht definiert
Kurtosis Nicht definiert
MGF MX(t) = eat

Charakteristische Funktion ϕX(t) = eiat

Anwendungen
• Modellierung von Sicherheit: Wenn ein Ereignis mit Sicherheit eintritt

• Grenzfälle: Approximation durch sehr konzentrierte Verteilungen

• Dirac-Delta-Funktion: Kontinuierliche Verallgemeinerung in der Analysis

• Bayessche Statistik: Prior-Verteilung bei exaktem Vorwissen

• Anfangsbedingungen: Startpunkt in stochastischen Prozessen
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Konvergenz zu Punktmasse

Betrachte eine Folge von Normalverteilungen mit schrumpfender Varianz:

x

Dichte

σ2 = 1

σ2 = 0.25

σ2 = 0.05

δ4

a = 4

σ → 0

Konvergenz
zu δa

Vergleich: PMF-Darstellung verschiedener Verteilungen

Wertebereich

Wahrscheinlichkeit

Punkt

1.0

Bernoulli

0.7

0.3

Binomial Uniform

0.2

Diskrete Gleichverteilung

Definition: X nimmt endlich viele Werte {x1, . . . , xk} an mit gleicher Wahrscheinlichkeit
P (X = xi) =

1
k

für alle i.
Beispiel: Würfelwurf mit einem fairen sechsseitigen Würfel: Werte {1, 2, 3, 4, 5, 6}, jeweils

mit Wahrscheinlichkeit 1/6.

Bernoulli-Verteilung

Definition: X ∈ {0, 1} mit P (X = 1) = p und P (X = 0) = 1 − p, p ∈ [0, 1]. PMF:
f(x) = px(1 − p)1−x für x ∈ {0, 1}. Modelliert einen einzelnen Versuch mit zwei Ausgän-
gen (Erfolg/Misserfolg).

Beispiel: Münzwurf mit einer fairen Münze: p = 0,5 für Kopf (X = 1) bzw. Zahl (X = 0).
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Binomialverteilung
Definition: X ∼ Binomial(n, p) ist die Anzahl der Erfolge in n unabhängigen Bernoulli-
Versuchen mit Erfolgswahrscheinlichkeit p. PMF:

P (X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, . . . , n.

Beispiel: Anzahl der Köpfe bei n = 10 Würfen einer fairen Münze (p = 0,5).

Geometrische Verteilung
Definition: X ∼ Geometrisch(p) ist die Anzahl der Versuche bis zum ersten Erfolg in einer
Sequenz unabhängiger Bernoulli-Versuche mit Erfolgswahrscheinlichkeit p. PMF:

P (X = k) = (1− p)k−1p, k = 1, 2, 3, . . .

Beispiel: Anzahl der Würfe mit einem fairen Würfel (p = 1/6 für eine Sechs), bis die erste
Sechs erscheint.

Poisson-Verteilung
Definition: X ∼ Poisson(λ), λ > 0, modelliert die Anzahl seltener Ereignisse in einem festen
Intervall. PMF:

P (X = k) = e−λλ
k

k!
, k = 0, 1, 2, . . .

Approximiert Binomial(n, p) für großes n und kleines p mit np = λ.
Beispiel: Anzahl der eingehenden Anrufe in einem Callcenter pro Stunde, wenn im Mittel

λ = 4 Anrufe pro Stunde erwartet werden.

2.4 Wichtige stetige Verteilungen

Gleichverteilung (Uniform)
X ∼ Uniform(a, b) mit pdf

f(x) =
1

b− a
, a < x < b.

Normalverteilung (Gauß-Verteilung)

X ∼ N(µ, σ2) mit pdf

f(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
, x ∈ R.

µ ist der Erwartungswert, σ2 die Varianz. N(0, 1) ist die Standardnormalverteilung.

Exponentialverteilung
X ∼ Exp(β) mit β > 0 hat die pdf

f(x) =
1

β
e−x/β, x > 0.

Die Exponentialverteilung ist gedächtnislos: P (X > s + t | X > s) = P (X > t) für alle
s, t > 0.
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Gamma-Verteilung

X ∼ Gamma(α, β) mit α, β > 0 hat die pdf

f(x) =
1

βαΓ(α)
xα−1e−x/β, x > 0,

wobei Γ(α) =
∫∞
0
tα−1e−t dt die Gamma-Funktion ist.

Beta-Verteilung

X ∼ Beta(α, β) mit α, β > 0 hat die pdf

f(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 < x < 1.

t-Verteilung

X ∼ tν mit ν Freiheitsgraden hat die pdf

f(x) =
Γ((ν + 1)/2)√
νπ Γ(ν/2)

(
1 +

x2

ν

)−(ν+1)/2

, x ∈ R.

χ2-Verteilung

X ∼ χ2
ν mit ν Freiheitsgraden ist ein Spezialfall der Gamma-Verteilung: χ2

ν = Gamma(ν/2, 2).

2.5 Bivariate Verteilungen

Definition 1
Die gemeinsame cdf von (X, Y ) ist

FX,Y (x, y) = P (X ≤ x, Y ≤ y).

Definition 2
Im diskreten Fall ist die gemeinsame pmf

fX,Y (x, y) = P (X = x, Y = y).

Im stetigen Fall ist die gemeinsame pdf eine Funktion fX,Y mit fX,Y (x, y) ≥ 0,∫∫
fX,Y (x, y) dx dy = 1 und

P ((X, Y ) ∈ A) =

∫∫
A

fX,Y (x, y) dx dy.
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Beispiel 2.5.1

Werfen zwei faire Würfel. Sei X das Minimum und Y das Maximum. Dann ist

P (X = 1, Y = 6) = P ({(1, 6), (6, 1)}) = 2

36
=

1

18
.

Beispiel 2.5.2

Sei (X, Y ) gleichverteilt auf dem Einheitsquadrat [0, 1]× [0, 1]. Dann ist

fX,Y (x, y) = 1, 0 < x, y < 1.

2.6 Randverteilungen

Definition 1
Im diskreten Fall sind die Randdichten

fX(x) =
∑
y

fX,Y (x, y), fY (y) =
∑
x

fX,Y (x, y).

Beispiel 2.6.1

Für die Tabelle aus Beispiel 2.18 ist

fX(0) =
1

9
+

2

9
+ 0 =

1

3
, fX(1) =

1

3
+ 0 +

1

9
=

4

9
, fX(2) =

1

18
+

1

9
+

1

18
=

2

9
.

Definition 2
Im stetigen Fall sind die Randdichten

fX(x) =

∫
fX,Y (x, y) dy, fY (y) =

∫
fX,Y (x, y) dx.

Beispiel 2.6.2

Sei fX,Y (x, y) =
6
5
(x+ y2) für 0 ≤ x, y ≤ 1. Dann ist

fX(x) =

∫ 1

0

6

5
(x+ y2) dy =

6

5

[
xy +

y3

3

]1
0

=
6

5

(
x+

1

3

)
, 0 < x < 1.
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2.7 Unabhängige Zufallsvariablen

Definition 1
Zwei Zufallsvariablen X und Y sind unabhängig, geschrieben X ⊥ Y , falls für alle
A,B ⊂ R gilt

P (X ∈ A, Y ∈ B) = P (X ∈ A) · P (Y ∈ B).

Satz 2
Seien X und Y mit gemeinsamer pdf fX,Y . Dann gilt X ⊥ Y genau dann, wenn

fX,Y (x, y) = fX(x) · fY (y)

für alle x, y.

Beweis. (⇒) Angenommen X ⊥ Y . Dann gilt für alle A,B:

P (X ∈ A, Y ∈ B) = P (X ∈ A) · P (Y ∈ B).

Wähle A = (−∞, x] und B = (−∞, y]. Differentiation nach x und y ergibt fX,Y (x, y) =
fX(x) · fY (y).

(⇐) Sei fX,Y (x, y) = fX(x) · fY (y). Dann ist für beliebige Mengen A,B:

P (X ∈ A, Y ∈ B) =

∫
A

∫
B

fX,Y (x, y) dy dx

=

∫
A

∫
B

fX(x)fY (y) dy dx

=

∫
A

fX(x) dx ·
∫
B

fY (y) dy

= P (X ∈ A) · P (Y ∈ B).

Beispiel 2.7.1

Seien X und Y unabhängig mit X ∼ Uniform(0, 1) und Y ∼ Exp(1). Dann ist

fX,Y (x, y) = fX(x) · fY (y) = 1 · e−y = e−y

für 0 < x < 1 und y > 0.
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Satz 3
Sind die Wertebereiche von X und Y ein (möglicherweise unendliches) Rechteck
X × Y und lässt sich fX,Y in der Form

fX,Y (x, y) = g(x)h(y)

schreiben, wobei g eine Funktion nur von x und h eine Funktion nur von y ist, dann
sind X und Y unabhängig.

Beweis. Aus der Faktorisierung fX,Y (x, y) = g(x)h(y) folgt für die Randdichten:

fX(x) =

∫
Y
g(x)h(y) dy = g(x)

∫
Y
h(y) dy = g(x) · c1,

fY (y) =

∫
X
g(x)h(y) dx = h(y)

∫
X
g(x) dx = h(y) · c2,

wobei c1, c2 Konstanten sind. Wegen
∫
X

∫
Y fX,Y (x, y) dy dx = 1 ist c1 · c2 = 1. Somit

fX,Y (x, y) = g(x)h(y) =
g(x)

c2
· h(y)
c1

· c1c2 = fX(x) · fY (y).

Nach dem vorherigen Theorem sind X und Y unabhängig.

2.8 Bedingte Verteilungen

Definition 1
Die bedingte pmf von Y gegeben X = x ist

fY |X(y | x) = fX,Y (x, y)

fX(x)
,

falls fX(x) > 0.

Definition 2
Im stetigen Fall ist die bedingte pdf von Y gegeben X = x

fY |X(y | x) = fX,Y (x, y)

fX(x)
,

falls fX(x) > 0.
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Beispiel 2.8.1

Gleichverteilung auf dem Einheitsquadrat: fX,Y (x, y) = 1 für 0 < x, y < 1. Die Rand-
dichte ist fX(x) =

∫ 1

0
1 dy = 1 für 0 < x < 1. Somit ist

fY |X(y | x) = fX,Y (x, y)

fX(x)
=

1

1
= 1

für 0 < y < 1. Also ist Y | X = x ∼ Uniform(0, 1).

Beispiel 2.8.2

Sei X ∼ Uniform(0, 1). Nach Beobachtung von X = x wählen wir Y ∼ Uniform(0, x).
Die gemeinsame Dichte ist

fX,Y (x, y) = fX(x) · fY |X(y | x) = 1 · 1
x
=

1

x

für 0 < y < x < 1. Die Randdichte von Y ist

fY (y) =

∫ 1

y

1

x
dx = [− ln x]1y = − ln y

für 0 < y < 1.

2.9 Multivariate Verteilungen und iid-Stichproben

Für n Zufallsvariablen X1, . . . , Xn ist die gemeinsame pdf

fX1,...,Xn(x1, . . . , xn).

Definition 1
Falls X1, . . . , Xn unabhängig sind und jede die gleiche Randverteilung f hat, nennen
wir sie unabhängig und identisch verteilt (engl. independent and identically distri-
buted, iid) und schreiben X1, . . . , Xn ∼ f . Dann ist

fX1,...,Xn(x1, . . . , xn) =
n∏

i=1

f(xi).

2.10 Zwei wichtige multivariate Verteilungen

Multinomialverteilung

Verallgemeinerung der Binomialverteilung. Haben n Versuche mit k möglichen Ausgän-
gen und Wahrscheinlichkeiten p1, . . . , pk (mit

∑k
i=1 pi = 1), so ist X = (X1, . . . , Xk) ∼
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Multinomial(n, p) mit

P (X1 = x1, . . . , Xk = xk) =
n!

x1! · · · xk!
px1
1 · · · pxk

k ,

wobei
∑k

i=1 xi = n.

Multivariate Normalverteilung

Ein Zufallsvektor X = (X1, . . . , Xk)
T hat eine multivariate Normalverteilung X ∼ N(µ,Σ),

falls die pdf

f(x) =
1

(2π)k/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
ist, wobei µ ∈ Rk der Erwartungswertvektor und Σ die k × k Kovarianzmatrix (positiv definit)
ist.

Satz 1

Ist Z ∼ N(0, I) (Standardnormalverteilung) und X = µ+ Σ1/2Z, so ist X ∼ N(µ,Σ).

Beweis. Sei A = Σ1/2. Die Transformation X = µ+AZ hat die Umkehrung Z = A−1(X − µ)
mit Jacobi-Determinante |J | = | det(A−1)| = |Σ|−1/2. Die pdf von Z ist

fZ(z) =
1

(2π)k/2
exp

(
−1

2
zT z

)
.

Mit der Transformationsformel folgt:

fX(x) = fZ(A
−1(x− µ)) · |J |

=
1

(2π)k/2
exp

(
−1

2
(x− µ)T (A−1)TA−1(x− µ)

)
· |Σ|−1/2

=
1

(2π)k/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
,

da (A−1)TA−1 = (AAT )−1 = Σ−1. Dies ist die Dichte von N(µ,Σ).

2.11 Transformationen von Zufallsvariablen

Sei Y = g(X) für eine Funktion g : R → R.

Diskreter Fall

Ist X diskret mit pmf fX , so hat Y die pmf

fY (y) = P (Y = y) = P (g(X) = y) =
∑

x:g(x)=y

fX(x).
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Beispiel 2.11.1

Sei P (X = −1) = P (X = 1) = 1/4 und P (X = 0) = 1/2. Sei Y = X2. Dann ist

fY (0) = P (Y = 0) = P (X = 0) = 1/2, fY (1) = P (Y = 1) = P (X = −1)+P (X = 1) = 1/2.

Stetiger Fall

Ist g streng monoton wachsend oder fallend, so hat Y die pdf

fY (y) = fX(g
−1(y))

∣∣∣∣ ddyg−1(y)

∣∣∣∣ .
Beispiel 2.11.2

Sei X ∼ Uniform(−1, 3) mit fX(x) = 1/4 für −1 < x < 3. Sei Y = X2. Der Wertebe-
reich von Y ist [0, 9]. Für 0 < y < 9 gibt es zwei Lösungen: x = ±√

y.

• Für 0 < y < 1: beide Werte liegen in (−1, 3), also

fY (y) = fX(
√
y) · 1

2
√
y
+ fX(−

√
y) · 1

2
√
y
=

1

4
· 1

2
√
y
+

1

4
· 1

2
√
y
=

1

4
√
y
.

• Für 1 ≤ y < 9: nur
√
y ∈ (−1, 3), also

fY (y) =
1

4
· 1

2
√
y
=

1

8
√
y
.

2.12 Transformationen mehrerer Zufallsvariabler

Seien X1, X2 mit gemeinsamer pdf fX1,X2 und Y1 = g1(X1, X2), Y2 = g2(X1, X2). Falls die
Transformation bijektiv ist mit Umkehrung X1 = h1(Y1, Y2), X2 = h2(Y1, Y2), so ist die pdf von
(Y1, Y2)

fY1,Y2(y1, y2) = fX1,X2(h1(y1, y2), h2(y1, y2))|J |,

wobei J die Determinante der Jacobi-Matrix ist:

J = det

(
∂h1

∂y1

∂h1

∂y2
∂h2

∂y1

∂h2

∂y2

)
.
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Beispiel 2.12.1

Seien X1, X2 ∼ Uniform(0, 1) unabhängig. Sei Y1 = X1 + X2 und Y2 = X1 − X2. Die
Umkehrung ist X1 = (Y1 + Y2)/2, X2 = (Y1 − Y2)/2. Die Jacobi-Determinante ist

J = det

(
1/2 1/2
1/2 −1/2

)
= −1/2,

also |J | = 1/2. Die gemeinsame pdf ist

fY1,Y2(y1, y2) = 1 · 1 · 1
2
=

1

2

im Bildbereich, d. h. für 0 < (y1 + y2)/2 < 1 und 0 < (y1 − y2)/2 < 1, also |y2| < y1 <
2− |y2|.

2.13 Anhang

Technisch gesehen muss eine Zufallsvariable messbar sein, d. h. für jede Borel-Menge B ⊂
R muss X−1(B) = {ω : X(ω) ∈ B} ein Ereignis sein (d. h. in der σ-Algebra liegen). Dies ist
in der Praxis meist erfüllt.
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Kapitel 3

Erwartungswert

3.1 Erwartungswert einer Zufallsvariable

Der Erwartungswert (oder Mittelwert) einer Zufallsvariable X ist ihr durchschnittlicher Wert.

Definition 1
Der Erwartungswert oder Mittelwert von X ist

E(X) =

∫
x dF (x) =

{∑
x xf(x) falls X diskret,∫
xf(x) dx falls X stetig,

falls die Summe (bzw. das Integral) wohldefiniert ist. Notation:

E(X) = EX =

∫
x dF (x) = µ = µX .

Der Erwartungswert ist eine Ein-Zahlen-Zusammenfassung der Verteilung. Man kann
E(X) als Durchschnitt 1

n

∑n
i=1Xi einer großen Anzahl iid Ziehungen X1, . . . , Xn verstehen.

Dies ist mehr als eine Heuristik – es ist ein Satz, das Gesetz der großen Zahlen (Kapitel 5).
Damit E(X) wohldefiniert ist, fordern wir

∫
|x| dFX(x) < ∞. Andernfalls existiert der Er-

wartungswert nicht.

Beispiel 3.1.1

Sei X ∼ Bernoulli(p). Dann ist E(X) =
∑1

x=0 xf(x) = 0 · (1− p) + 1 · p = p.

Beispiel 3.1.2

Fairer Münzwurf zweimal, X = Anzahl Köpfe. Dann ist

E(X) =
∑
x

xfX(x) = 0 · 1
4
+ 1 · 1

2
+ 2 · 1

4
= 1.
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Beispiel 3.1.3

Sei X ∼ Uniform(−1, 3). Dann ist

E(X) =

∫
xfX(x) dx =

1

4

∫ 3

−1

x dx =
1

4

[
x2

2

]3
−1

= 1.

Beispiel 3.1.4

[Cauchy-Verteilung] Eine Zufallsvariable hat Cauchy-Verteilung mit Dichte fX(x) =
1

π(1+x2)
. Dann ist ∫

|x| dF (x) = 2

π

∫ ∞

0

x

1 + x2
dx = ∞,

also existiert der Erwartungswert nicht. Simuliert man viele Cauchy-Ziehungen, stabi-
lisiert sich der Durchschnitt nie, da die Cauchy-Verteilung dicke Tails hat.

Von nun an setzen wir implizit voraus, dass Erwartungswerte existieren.

Satz 2
[Regel des faulen Statistikers] Sei Y = r(X). Dann ist

E(Y ) = E(r(X)) =

∫
r(x) dFX(x) =

{∑
x r(x)fX(x) falls X diskret,∫
r(x)fX(x) dx falls X stetig.

Man muss also nicht erst die Verteilung von Y bestimmen.

Beispiel 3.1.5

Sei X ∼ Unif(0, 1) und Y = eX . Dann ist

E(Y ) = E(eX) =
∫ 1

0

ex · 1 dx = [ex]10 = e− 1.

Beispiel 3.1.6

Stab der Länge 1, zufällig gebrochen beiX ∼ Unif(0, 1). Sei Y die Länge des längeren
Stücks. Dann ist Y = max(X, 1−X) und

E(Y ) =

∫ 1/2

0

(1− x) dx+

∫ 1

1/2

x dx =
3

4
.
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Satz 3
Existiert das k-te Moment und ist j < k, so existiert auch das j-te Moment.

3.2 Eigenschaften des Erwartungswerts

Satz 1
Seien X1, . . . , Xn Zufallsvariablen und a1, . . . , an Konstanten. Dann ist

E

(
n∑

i=1

aiXi

)
=

n∑
i=1

ai E(Xi).

Der Erwartungswert ist also linear.

Beispiel 3.2.1

[Binomialverteilung] Sei X ∼ Binomial(n, p). Schreibe X =
∑n

i=1Xi, wobei Xi ∼
Bernoulli(p). Dann ist

E(X) = E

(
n∑

i=1

Xi

)
=

n∑
i=1

E(Xi) =
n∑

i=1

p = np.

Satz 2
Seien X1, . . . , Xn unabhängig. Dann ist

E

(
n∏

i=1

Xi

)
=

n∏
i=1

E(Xi).

3.3 Varianz und Kovarianz

Definition 1
Sei X eine Zufallsvariable mit Mittelwert µ. Die Varianz ist

Var(X) = E
[
(X − µ)2

]
.

Die Standardabweichung ist σ =
√

Var(X). Notation: Var(X) = σ2 = σ2
X .
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Satz 2
Die Varianz hat folgende Eigenschaften (falls wohldefiniert):

1. Var(X) = E(X2)− [E(X)]2,

2. Falls a, b Konstanten sind, gilt Var(aX + b) = a2Var(X),

3. Var(X) ≥ 0.

Beispiel 3.3.1

Sei X ∼ Binomial(n, p) mit X =
∑n

i=1Xi, wobei Xi = 1 für Erfolg beim i-ten Versuch.
Da die Xi unabhängig sind, ist

Var(X) =
n∑

i=1

Var(Xi).

Für Xi ∼ Bernoulli(p) ist Var(Xi) = E(X2
i )− [E(Xi)]

2 = p− p2 = p(1− p). Also

Var(X) = np(1− p).

Satz 3

Seien X1, . . . , Xn iid mit µ = E(Xi) und σ2 = Var(Xi). Sei Xn = 1
n

∑n
i=1Xi der Stich-

probenmittelwert. Dann ist

E(Xn) = µ, Var(Xn) =
σ2

n
.

Definition 4
Seien X und Y Zufallsvariablen mit Erwartungswerten µX und µY . Die Kovarianz ist

Cov(X,Y ) = E[(X − µX)(Y − µY )] = E(XY )− µXµY .
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Satz 5
Die Kovarianz erfüllt:

1. Cov(X,X) = Var(X),

2. Falls X und Y unabhängig sind, ist Cov(X, Y ) = 0,

3. Cov(X, Y ) = Cov(Y,X),

4. Cov(aX, Y ) = aCov(X, Y ),

5. Cov(X, a) = 0 für eine Konstante a,

6. Cov(X + Y, Z) = Cov(X,Z) + Cov(Y, Z).

Satz 6
Es gilt

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y )

und
Var(X − Y ) = Var(X) + Var(Y )− 2Cov(X, Y ).

Definition 7
Die Korrelation zwischen X und Y ist

ρ(X, Y ) =
Cov(X,Y )√
Var(X)Var(Y )

.

Es gilt −1 ≤ ρ(X,Y ) ≤ 1.

3.4 Erwartungswert und Varianz wichtiger Verteilungen

Verteilung E(X) Var(X)

Punktmasse an a a 0
Bernoulli(p) p p(1− p)
Binomial(n, p) np np(1− p)
Geometrisch(p) 1/p (1− p)/p2

Poisson(λ) λ λ
Uniform(a, b) (a+ b)/2 (b− a)2/12
Normal(µ, σ2) µ σ2

Exp(β) β β2

Gamma(α, β) αβ αβ2

Beta(α, β) α/(α + β) αβ/[(α+ β)2(α + β + 1)]
tν 0 (ν > 1) ν/(ν − 2) (ν > 2)
χ2
p p 2p
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Lemma 1
Sei a ein Vektor und X ein Zufallsvektor mit Erwartungswert µ und Kovarianzmatrix
Σ. Dann ist

E(aTX) = aTµ, Var(aTX) = aTΣa.

3.5 Bedingter Erwartungswert

Definition 1
Der bedingte Erwartungswert von X gegeben Y = y ist

E(X | Y = y) =

∫
xfX|Y (x | y) dx.

Definiere g(y) = E(X | Y = y). Dann ist E(X | Y ) die Zufallsvariable g(Y ).

Beispiel 3.5.1

Ziehe X ∼ Unif(0, 1). Nach Beobachtung von X = x ziehe Y ∼ Unif(0, x). Dann ist

E(Y | X = x) =
x

2
, E(Y | X) =

X

2
.

Satz 2
[Regel der iterierten Erwartungswerte] Für Zufallsvariablen X und Y gilt

E(E(Y | X)) = E(Y ).

Beispiel 3.5.2

Im vorigen Beispiel ist

E(Y ) = E(E(Y | X)) = E
(
X

2

)
=

1

2
E(X) =

1

2
· 1
2
=

1

4
.

Man kann auch direkt rechnen: E(Y ) =
∫ 1

0
y(− ln y) dy = 1/4.
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Definition 3
Die bedingte Varianz ist

Var(Y | X = x) =

∫
(y − µ(x))2fY |X(y | x) dy,

wobei µ(x) = E(Y | X = x).

Satz 4
Für Zufallsvariablen X und Y gilt

Var(Y ) = E(Var(Y | X)) + Var(E(Y | X)).

Beispiel 3.5.3

Ziehe zufällig eine Grafschaft in den USA. Ziehe dann zufällig eine Person aus dieser
Grafschaft. Sei Y das Einkommen. Wir haben

Var(Y ) = E(Var(Y | X))︸ ︷︷ ︸
Varianz innerhalb Grafschaften

+ Var(E(Y | X))︸ ︷︷ ︸
Varianz zwischen Grafschaften

.

3.6 Momenterzeugende Funktionen

Definition 1
Die momenterzeugende Funktion (engl. moment generating function, mgf ) ist

ψX(t) = E(etX) =
∫
etx dFX(x).

Beispiel 3.6.1

Sei X ∼ Exp(1). Für t < 1 ist

ψX(t) =

∫ ∞

0

etxe−x dx =

∫ ∞

0

e(t−1)x dx =
1

1− t
.
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Lemma 2
Eigenschaften der mgf:

1. Das k-te Moment ist E(Xk) = ψ
(k)
X (0), wobei ψ(k)

X die k-te Ableitung ist.

2. Sind X und Y unabhängig, so ist ψX+Y (t) = ψX(t)ψY (t).

3. ψaX+b(t) = ebtψX(at).

Beispiel 3.6.2

Sei X ∼ Binomial(n, p) mit X =
∑n

i=1Xi, wobei Xi ∼ Bernoulli(p). Dann ist ψXi
(t) =

(1− p) + pet und

ψX(t) =
n∏

i=1

ψXi
(t) = [(1− p) + pet]n.

Satz 3
Seien X und Y Zufallsvariablen. Falls ψX(t) = ψY (t) für alle t in einer Umgebung von
0, dann ist FX(x) = FY (x) für alle x, d. h. X und Y haben die gleiche Verteilung.

Beispiel 3.6.3

Seien X1 ∼ Binomial(n1, p) und X2 ∼ Binomial(n2, p) unabhängig. Sei Y = X1 + X2.
Dann ist

ψY (t) = ψX1(t)ψX2(t) = [(1− p) + pet]n1 [(1− p) + pet]n2 = [(1− p) + pet]n1+n2 .

Also ist Y ∼ Binomial(n1 + n2, p).

Beispiel 3.6.4

Seien Y1 ∼ Poisson(λ1) und Y2 ∼ Poisson(λ2) unabhängig. Dann ist ψY1(t) = eλ1(et−1)

und
ψY1+Y2(t) = eλ1(et−1)eλ2(et−1) = e(λ1+λ2)(et−1).

Also ist Y1 + Y2 ∼ Poisson(λ1 + λ2).

3.7 Anhang

Wichtige Momente

Für X ∼ N(µ, σ2) gilt:
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• E(X) = µ,

• Var(X) = σ2,

• E(X3) = µ3 + 3µσ2,

• E(X4) = µ4 + 6µ2σ2 + 3σ4.

Ungleichungen
Markov-Ungleichung: Für X ≥ 0 und t > 0 gilt

P (X ≥ t) ≤ E(X)

t
.

Tschebyschow-Ungleichung: Für beliebige X mit Erwartungswert µ und Varianz σ2 gilt
für t > 0

P (|X − µ| ≥ t) ≤ σ2

t2
.
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Kapitel 4

Ungleichungen

4.1 Wahrscheinlichkeitsungleichungen

Stellen Sie sich vor, Sie haben eine Münze, bei der Sie nicht sicher sind, ob sie fair ist. Sie
werfen sie 100-mal und erhalten 65-mal Kopf. Ist die Münze manipuliert? Oder hatten Sie
nur Pech? Oder – mathematisch präziser gefragt: Wie wahrscheinlich ist es, bei einer fairen
Münze so weit vom Erwartungswert abzuweichen?

Genau hier kommen Wahrscheinlichkeitsungleichungen ins Spiel. Sie sind das Schwei-
zer Taschenmesser der Statistik: Mit minimalem Wissen über eine Verteilung – manchmal
nur ihrem Erwartungswert oder ihrer Varianz – können wir mächtige Aussagen über die
Wahrscheinlichkeit seltener Ereignisse treffen.

Das Schöne ist: Diese Ungleichungen gelten unabhängig von der konkreten Verteilung.
Ob normal, binomial, exponentiell oder etwas ganz Exotisches – die Gesetze gelten univer-
sal. Das macht sie besonders wertvoll in der Praxis, wo wir die wahre Verteilung oft nicht
kennen.

Aber Ungleichungen sind mehr als nur ein praktisches Werkzeug. Sie sind das theore-
tische Fundament der gesamten Konvergenztheorie (Kapitel 5), sie garantieren die Zuver-
lässigkeit statistischer Verfahren und sie erklären, warum maschinelles Lernen überhaupt
funktioniert. Wenn Sie verstehen wollen, wie aus Daten Wissen wird, führt kein Weg an
diesen Ungleichungen vorbei.

Lassen Sie uns mit der einfachsten beginnen – und einer der mächtigsten.

Satz 1
[Markov-Ungleichung] Sei X eine nichtnegative Zufallsvariable mit existierendem Er-
wartungswert E(X). Für jedes t > 0 gilt

P (X ≥ t) ≤ E(X)

t
.

53
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Beweis. Da X ≥ 0, können wir den Erwartungswert aufspalten:

E(X) =

∫ ∞

0

xf(x) dx

=

∫ t

0

xf(x) dx+

∫ ∞

t

xf(x) dx

≥
∫ ∞

t

xf(x) dx ≥ t

∫ ∞

t

f(x) dx = t P (X ≥ t).

Division durch t > 0 liefert die Behauptung.

Interpretation: Die Markov-Ungleichung sagt uns: Wenn der Erwartungswert klein ist,
kann X nicht zu oft große Werte annehmen. Ist etwa E(X) = 5 und t = 50, so ist P (X ≥
50) ≤ 5/50 = 0,1. Die Masse der Verteilung kann nicht beliebig weit vom Erwartungswert
wegwandern.

Satz 2
[Tschebyschow-Ungleichung] Sei µ = E(X) und σ2 = Var(X). Dann gilt

P (|X − µ| ≥ t) ≤ σ2

t2

und mit Z = (X − µ)/σ (standardisierte Variable)

P (|Z| ≥ k) ≤ 1

k2
.

Insbesondere ist P (|Z| > 2) ≤ 1/4 und P (|Z| > 3) ≤ 1/9.

Beweis. Wende Markov auf die nichtnegative Zufallsvariable |X − µ|2 an:

P (|X − µ| ≥ t) = P (|X − µ|2 ≥ t2) ≤ E(|X − µ|2)
t2

=
σ2

t2
.

Setze t = kσ für die zweite Aussage.

Interpretation: Tschebyschow ist stärker als Markov, weil wir zusätzliche Information
(die Varianz) nutzen. Die Ungleichung garantiert, dass bei jeder Verteilung mindestens 75%
der Masse innerhalb von 2σ um den Mittelwert liegt. Bei 3σ sind es mindestens ≈ 89%.
Das ist die mathematische Basis für die „68-95-99,7-Regel"bei Normalverteilungen – nur
allgemeiner!
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Beispiel 4.1.1

[Fehlerrate eines Prädiktors] Stellen Sie sich vor, Sie testen ein neuronales Netz auf
n neuen Testfällen. Sei Xi = 1 falls die i-te Vorhersage falsch ist, sonst Xi = 0. Die
beobachtete Fehlerrate ist dann

Xn =
1

n

n∑
i=1

Xi.

Jedes Xi ist Bernoulli-verteilt mit unbekanntem Parameter p (der wahren Fehlerrate).
Die Frage ist: Wie weit kann Xn von p abweichen?
Da Var(Xi) = p(1− p) ≤ 1/4 und die Xi unabhängig sind, ist

Var(Xn) =
Var(X1)

n
=
p(1− p)

n
≤ 1

4n
.

Mit Tschebyschow erhalten wir

P (|Xn − p| > ϵ) ≤ 1

4nϵ2
.

Konkretes Beispiel: Bei n = 1000 Testfällen und ϵ = 0,05 (5 % Abweichung):

P (|Xn − p| > 0,05) ≤ 1

4 · 1000 · 0,0025
=

1

10
= 0,1.

Mit mindestens 90% Wahrscheinlichkeit liegt unsere gemessene Fehlerrate innerhalb
von ±5% der wahren Fehlerrate. Nicht schlecht für eine verteilungsfreie Garantie!

Satz 3
[Hoeffding-Ungleichung] Seien Y1, . . . , Yn unabhängig mit E(Yi) = 0 und ai ≤ Yi ≤ bi.
Sei ϵ > 0. Dann gilt

P

(
n∑

i=1

Yi ≥ ϵ

)
≤ exp

(
− 2ϵ2∑n

i=1(bi − ai)2

)
.

Beweis. Der Beweis nutzt zwei Ideen: die Chernoff-Methode und das Hoeffding-Lemma.
Schritt 1 (Hoeffding-Lemma): Für E(Y ) = 0 und a ≤ Y ≤ b gilt

E(etY ) ≤ exp

(
t2(b− a)2

8

)
für alle t ∈ R.

Beweis des Lemmas: Da Y beschränkt ist, können wir Y als Konvexkombination der Rand-
punkte schreiben. Für y ∈ [a, b] ist

y =
b− y

b− a
· a+ y − a

b− a
· b.

Wegen Konvexität von etx gilt

ety ≤ b− y

b− a
eta +

y − a

b− a
etb.
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Mit E(Y ) = 0 folgt E(Y ) = λa+ (1− λ)b = 0 für λ = b/(b− a), also

E(etY ) ≤ b

b− a
eta +

−a
b− a

etb

= eta
[
b− b · 1 + a · et(b−a)

b− a

]
= e−ta/(b−a) · −a+ bet(b−a)

b− a
.

Setze h = t(b− a) und p = −a/(b− a) ∈ [0, 1]. Definiere

L(h) := −ph+ log(1− p+ peh).

Es ist L(0) = L′(0) = 0 und L′′(h) = p(1−p)eh

(1−p+peh)2
≤ 1

4
(da p(1− p) ≤ 1/4). Mit Taylor folgt

L(h) ≤ h2

8
=⇒ E(etY ) ≤ et

2(b−a)2/8.

Schritt 2 (Chernoff-Methode): Für t > 0 gilt mit Markov:

P

(
n∑

i=1

Yi ≥ ϵ

)
= P

(
et

∑
Yi ≥ etϵ

)
≤ E(et

∑
Yi)

etϵ

= e−tϵ

n∏
i=1

E(etYi) (Unabhängigkeit)

≤ e−tϵ

n∏
i=1

exp

(
t2(bi − ai)

2

8

)
(Hoeffding-Lemma)

= exp

(
t2

n∑
i=1

(bi − ai)
2

8
− tϵ

)
.

Schritt 3 (Optimierung): Minimiere die rechte Seite über t > 0. Ableitung nach t:

d

dt

[
t2

8

∑
(bi − ai)

2 − tϵ

]
=
t

4

∑
(bi − ai)

2 − ϵ = 0.

Optimal ist t∗ = 4ϵ/
∑

(bi − ai)
2. Einsetzen liefert

exp

(
16ϵ2

8
∑

(bi − ai)2
·
∑

(bi − ai)
2

16
− 4ϵ2∑

(bi − ai)2

)
= exp

(
2ϵ2∑

(bi − ai)2
− 4ϵ2∑

(bi − ai)2

)
= exp

(
− 2ϵ2∑

(bi − ai)2

)
.

Bemerkung: Hoeffding ist eine der mächtigsten Konzentrationsungleichungen überhaupt.
Sie sagt: Summen von beschränkten Zufallsvariablen konzentrieren sich exponentiell schnell
um ihren Erwartungswert. Die Wahrscheinlichkeit großer Abweichungen fällt exponentiell
mit ϵ2 – viel schneller als die polynomiellen Schranken von Markov oder Tschebyschow!



4.1. WAHRSCHEINLICHKEITSUNGLEICHUNGEN 57

Alternativbeweis (kompakte Version)

Der obige Beweis ist vollständig und zeigt alle Details des Hoeffding-Lemmas. Hier eine
kompakte Alternative, die die Kernidee auf das Wesentliche reduziert:

Beweis (Chernoff-Methode): Für jedes t > 0 gilt

P

(
n∑

i=1

Yi ≥ ϵ

)
= P

(
exp

(
t

n∑
i=1

Yi

)
≥ etϵ

)

≤ E (exp (t
∑
Yi))

etϵ
(Markov)

=

∏n
i=1 E(etYi)

etϵ
(Unabhängigkeit).

Das Hoeffding-Lemma (siehe Beweis oben) besagt: Für E(Y ) = 0 und a ≤ Y ≤ b gilt

E(etY ) ≤ exp

(
t2(b− a)2

8

)
.

Einsetzen liefert

P
(∑

Yi ≥ ϵ
)
≤ exp

(
t2
∑

(bi − ai)
2

8
− tϵ

)
.

Minimierung über t (optimal: t∗ = 4ϵ/
∑

(bi − ai)
2) ergibt

P
(∑

Yi ≥ ϵ
)
≤ exp

(
− 2ϵ2∑

(bi − ai)2

)
.

Kernidee: Durch Exponenzieren wird die Summe zum Produkt (Unabhängigkeit!), dann
Hoeffding-Lemma, dann Optimierung über den freien Parameter t.

Korollar 4
Seien X1, . . . , Xn ∼ Bernoulli(p) unabhängig. Dann gilt für jedes ϵ > 0

P (|Xn − p| > ϵ) ≤ 2e−2nϵ2 .

Beweis. Setze Yi = Xi − p. Dann ist E(Yi) = 0, und wegen 0 ≤ Xi ≤ 1 gilt −p ≤ Yi ≤ 1− p,
also bi − ai = 1. Mit Hoeffding folgt

P (Xn − p > ϵ) = P

(
n∑

i=1

Yi > nϵ

)

≤ exp

(
−2(nϵ)2

n · 12

)
= e−2nϵ2 .

Symmetrisch für P (Xn − p < −ϵ). Die Unionsschranke P (A ∪ B) ≤ P (A) + P (B) liefert die
Behauptung.
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Beispiel 4.1.2

[Tschebyschow vs. Hoeffding] Betrachte X1, . . . , Xn ∼ Bernoulli(p) mit n = 100 und
ϵ = 0,2.
Tschebyschow:

P (|Xn − p| > 0,2) ≤ p(1− p)

100 · 0,04
≤ 0,25

4
= 0,0625.

Hoeffding:
P (|Xn − p| > 0,2) ≤ 2e−2·100·0,04 = 2e−8 ≈ 0,00067.

Hoeffding ist hier fast 100-mal schärfer! Für große Abweichungen ist die exponenti-
elle Schranke unschlagbar.

Bemerkung 4.1.1 (Quantitativer Vergleich). Die folgende Tabelle zeigt die Schranken für
P (|Xn − p| > ϵ) bei Xi ∼ Bernoulli(0,5), n = 100:

ϵ Tschebyschow Hoeffding Exakt (Binomial)

0,05 0,100 0,606 0,729
0,10 0,025 0,135 0,157
0,20 0,006 0,001 0,0003
0,30 0,003 10−8 10−11

Beobachtungen:

• Für kleine ϵ (0,05–0,10): Beide Schranken sind konservativ, aber Hoeffding ist näher
am wahren Wert.

• Für große ϵ (0,20–0,30): Hoeffding ist dramatisch schärfer – der exponentielle Abfall
macht den Unterschied!

• Die Hoeffding-Schranke ist universell : Sie gilt für alle beschränkten Verteilungen, nicht
nur Bernoulli.

Satz 5
[Mill-Ungleichung] Sei Z ∼ N(0, 1). Dann gilt

P (|Z| > t) ≤
√

2

π

e−t2/2

t
und P (|Z| > t) ≤ 2e−t2/2

für t > 0.

Beweis. Wegen Symmetrie ist P (|Z| > t) = 2P (Z > t). Die Dichte von Z ist φ(x) =
1√
2π
e−x2/2.
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Erste Schranke: Für t > 0 gilt mit partieller Integration

P (Z > t) =

∫ ∞

t

1√
2π
e−x2/2dx =

∫ ∞

t

1√
2π

· x
x
e−x2/2dx

=
1√
2π

∫ ∞

t

1

x
· xe−x2/2dx

≤ 1√
2π

· 1
t

∫ ∞

t

xe−x2/2dx (da 1/x fallend)

=
1√
2π

· 1
t

[
−e−x2/2

]∞
t

=
1√
2π

e−t2/2

t
.

Also P (|Z| > t) = 2P (Z > t) ≤
√

2
π
e−t2/2

t
.

Zweite Schranke: Mit Markov für etZ und s > 0:

P (Z > t) = P (esZ > est) ≤ E(esZ)
est

.

Für Z ∼ N(0, 1) ist E(esZ) = es
2/2 (MGF der Normalverteilung). Somit

P (Z > t) ≤ es
2/2−st = e−st+s2/2.

Minimierung über s (optimal: s = t) liefert P (Z > t) ≤ e−t2/2, also P (|Z| > t) ≤ 2e−t2/2.

Bemerkung 4.1.2. Für große t ist Mill deutlich besser als Tschebyschow:

t Tschebyschow Mill

2 ≤ 0,25 ≤ 0,27
3 ≤ 0,11 ≤ 0,02
4 ≤ 0,0625 ≤ 0,0027

Für t ≥ 3 ist Mill um Größenordnungen schärfer. Das liegt daran, dass Mill die spezielle
Struktur der Normalverteilung ausnutzt, während Tschebyschow nur Erwartungswert und
Varianz kennt.

4.2 Ungleichungen für Erwartungswerte

Während die vorherigen Ungleichungen Wahrscheinlichkeiten abschätzen, beschäftigen wir
uns jetzt mit Ungleichungen zwischen Erwartungswerten. Diese sind fundamental für viele
Beweise in der Wahrscheinlichkeitstheorie und ermöglichen elegante Argumente.

Satz 1
[Cauchy-Schwarz-Ungleichung] Haben X und Y endliche zweite Momente, so gilt

E(|XY |) ≤
√
E(X2)E(Y 2)

und
|Cov(X, Y )| ≤

√
Var(X)Var(Y ).

Gleichheit gilt genau dann, wenn X und Y linear abhängig sind.
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Beweis. Für t ∈ R ist

0 ≤ E[(X − tY )2]

= E(X2)− 2tE(XY ) + t2 E(Y 2).

Dies ist eine quadratische Funktion in t mit Minimum bei t∗ = E(XY )/E(Y 2). Einsetzen
liefert

0 ≤ E(X2)− [E(XY )]2

E(Y 2)
,

woraus [E(XY )]2 ≤ E(X2)E(Y 2) folgt. Ersetze X durch |X| und Y durch |Y | für die erste
Aussage.

Für die zweite Aussage wende die erste auf X − E(X) und Y − E(Y ) an.

Interpretation: Cauchy-Schwarz sagt, dass der Erwartungswert eines Produkts nie grö-
ßer sein kann als das geometrische Mittel der zweiten Momente. Die Kovarianz-Version
zeigt: |ρ(X,Y )| = |Cov(X, Y )|/

√
Var(X)Var(Y ) ≤ 1, was wir bereits wussten, aber hier als

Spezialfall erhalten.

Satz 2
[Jensen-Ungleichung] Ist g konvex, so gilt

E(g(X)) ≥ g(E(X)).

Ist g konkav, so gilt
E(g(X)) ≤ g(E(X)).

Beweis. Wir beweisen die Aussage für konvexes g. Sei µ = E(X).
Schritt 1: Existenz der Stützgeraden. Da g konvex ist, existiert zu jedem Punkt µ ein

Subgradient a ∈ R, sodass die affin-lineare Funktion

h(x) = a(x− µ) + g(µ)

eine Stützgerade an g im Punkt µ ist. Dies bedeutet per Definition der Konvexität:

g(x) ≥ h(x) = a(x− µ) + g(µ) für alle x ∈ R.

Begründung: Für konvexe Funktionen gilt die Ungleichung

g(y) ≥ g(x) + a(y − x)

für einen geeigneten Subgradienten a (der bei differenzierbaren Funktionen gleich g′(x) ist).
Setzen wir x = µ und y beliebig, folgt die Stützgeraden-Eigenschaft.

Schritt 2: Anwendung der Linearität des Erwartungswerts. Da h(x) = a(x − µ) +
g(µ) = ax− aµ+ g(µ) affin-linear ist, gilt

E(h(X)) = E(aX − aµ+ g(µ))

= aE(X)− aµ+ g(µ)

= aµ− aµ+ g(µ)

= g(µ) = g(E(X)).
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Schritt 3: Anwendung der Stützgeraden-Eigenschaft. Aus g(x) ≥ h(x) für alle x folgt
durch Anwendung des Erwartungswerts (unter Nutzung der Monotonie: aus Y ≥ Z folgt
E(Y ) ≥ E(Z)):

E(g(X)) ≥ E(h(X)) = g(E(X)).

Konkaver Fall: Ist g konkav, so ist −g konvex. Aus dem konvexen Fall folgt

E(−g(X)) ≥ −g(E(X)) ⇐⇒ E(g(X)) ≤ g(E(X)).

Dies zeigt die Jensen-Ungleichung für konkave Funktionen.

Geometrische Intuition: Konvexe Funktionen „biegen nach oben". Wenn wir X durch
seinen Mittelwert ersetzen und dann g anwenden, erhalten wir einen kleineren Wert als
wenn wir erst g anwenden und dann mitteln. Die Funktion „verstärkt"die Variabilität von X.

Beispiel 4.2.1

[Anwendungen der Jensen-Ungleichung] (1) Da g(x) = x2 konvex ist, folgt

E(X2) ≥ [E(X)]2 ⇐⇒ Var(X) = E(X2)− [E(X)]2 ≥ 0.

Die Varianz ist also automatisch nichtnegativ – keine separate Rechnung nötig!
(2) Da g(x) = log x konkav ist (für x > 0), folgt

E(logX) ≤ logE(X).

Äquivalent: Das geometrische Mittel ist höchstens so groß wie das arithmetische Mit-
tel :

exp[E(logX)] ≤ E(X).

Bemerkung 4.2.1 (Weitere wichtige Ungleichungen). Für Vollständigkeit erwähnen wir zwei
weitere Klassiker:

Minkowski-Ungleichung: Für p ≥ 1 gilt

[E(|X + Y |p)]1/p ≤ [E(|X|p)]1/p + [E(|Y |p)]1/p.

Dies ist die Lp-Dreiecksungleichung: Der Lp-Abstand zwischen X und −Y ist höchstens die
Summe der Abstände.

Hölder-Ungleichung: Für p, q > 1 mit 1/p+ 1/q = 1 gilt

E(|XY |) ≤ [E(|X|p)]1/p[E(|Y |q)]1/q.

Für p = q = 2 erhalten wir gerade Cauchy-Schwarz. Hölder ist die allgemeine Version für
konjugierte Exponenten.
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Kapitel 5

Konvergenz von Zufallsvariablen

5.1 Einführung und Motivation

Der wichtigste Aspekt der Wahrscheinlichkeitstheorie betrifft das Verhalten von Folgen von
Zufallsvariablen. Dieser Teil wird Große-Stichproben-Theorie, Grenzwerttheorie oder asym-
ptotische Theorie genannt.

Motivation: In der Praxis haben wir oft eine Folge X1, X2, X3, . . . von Zufallsvariablen.
Beispiele:

• Xi = Ergebnis des i-ten Münzwurfs

• Xi = Messung einer physikalischen Größe zum Zeitpunkt i

• Xi = Rendite einer Aktie am Tag i

Die zentrale Frage lautet: Was können wir über das Grenzverhalten für n → ∞ aussa-
gen?

In der Analysis konvergiert eine Zahlenfolge xn gegen x, falls für jedes ϵ > 0 gilt: |xn −
x| < ϵ für alle hinreichend großen n. In der Wahrscheinlichkeitstheorie sind Zufallsvariablen
Funktionen X : Ω → R, und es gibt verschiedene sinnvolle Konzepte von Konvergenz.

Zwei fundamentale Resultate:

1. Das Gesetz der großen Zahlen: Der Stichprobenmittelwert Xn = 1
n

∑n
i=1Xi konver-

giert gegen µ = E(Xi).

2. Der zentrale Grenzwertsatz: Die normierte Summe
∑n

i=1(Xi−µ)

σ
√
n

konvergiert in Vertei-
lung gegen N(0, 1).

Diese Sätze bilden das theoretische Fundament der gesamten Statistik.

5.2 Konvergenzarten

Wir beginnen mit präzisen Definitionen der verschiedenen Konvergenzarten.

63
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Definition 1
[Konvergenz in Wahrscheinlichkeit] Sei (Xn)n∈N eine Folge von Zufallsvariablen undX
eine Zufallsvariable, alle definiert auf demselben Wahrscheinlichkeitsraum (Ω,F , P ).
Wir sagen, Xn konvergiert in Wahrscheinlichkeit gegen X, geschrieben Xn

P−→ X,
falls für jedes ϵ > 0 gilt:

lim
n→∞

P (|Xn −X| > ϵ) = 0.

Ist X konstant gleich c, schreiben wir Xn
P−→ c.

Intuition: Die Wahrscheinlichkeit, dass Xn weit von X entfernt ist, wird beliebig klein. Mit
hoher Wahrscheinlichkeit liegt Xn nahe bei X für großes n.

Definition 2
[Konvergenz in Verteilung] Sei (Xn)n∈N eine Folge von Zufallsvariablen mit Vertei-
lungsfunktionen Fn und X eine Zufallsvariable mit Verteilungsfunktion F .
Wir sagen, Xn konvergiert in Verteilung gegen X, geschrieben Xn

d−→ X, falls

lim
n→∞

Fn(t) = F (t)

an allen Stetigkeitsstellen t von F .

Bemerkung: Die Xn und X müssen nicht auf demselben Wahrscheinlichkeitsraum defi-
niert sein – nur ihre Verteilungen zählen. Dies ist die schwächste Form von Konvergenz.

Definition 3
[Konvergenz in Lp] Für p ≥ 1 sagen wir, Xn konvergiert in Lp gegen X, falls

lim
n→∞

E[|Xn −X|p] = 0.

Für p = 2 spricht man von Konvergenz in quadratischem Mittel.

Definition 4
[Fast-sichere Konvergenz] Wir sagen, Xn konvergiert fast sicher gegen X, ge-
schrieben Xn

a.s.−−→ X, falls
P
(
lim
n→∞

Xn = X
)
= 1,

d.h.
P
(
{ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)}

)
= 1.

Intuition: Mit Wahrscheinlichkeit 1 konvergiert die Folge punktweise gegen X.
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Beispiel 5.2.1

[Normalverteilung mit schrumpfender Varianz] Sei Xn ∼ N(0, 1/n). Intuitiv konzen-
triert sich Xn bei 0.
(a) L2-Konvergenz:

E(X2
n) = Var(Xn) =

1

n
→ 0.

Also Xn → 0 in L2.
(b) Konvergenz in Wahrscheinlichkeit: Für ϵ > 0 und Z ∼ N(0, 1):

P (|Xn| > ϵ) = P

(∣∣∣∣ Z√n
∣∣∣∣ > ϵ

)
= P (|Z| > ϵ

√
n) → 0.

Also Xn
P−→ 0.

(c) Konvergenz in Verteilung:

Fn(t) = P (Xn ≤ t) = Φ(t
√
n),

wobei Φ die cdf von N(0, 1) ist. Für t < 0 ist Φ(t
√
n) → 0, und für t > 0 ist Φ(t

√
n) → 1.

Bei t = 0 haben wir Φ(0) = 1/2 für alle n, aber 0 ist eine Unstetigkeitsstelle der
Grenzverteilung (Punktmasse bei 0). An allen anderen Punkten gilt:

Fn(t) → F (t) =

{
0 t < 0,

1 t ≥ 0.

Also Xn
d−→ 0.

Beispiel 5.2.2

[Gegenbeispiel: Konvergenz in Verteilung impliziert nicht Konvergenz in Wahrschein-
lichkeit] SeiX ∼ N(0, 1) und definiereXn = −X für alle n. Dann hat jedesXn dieselbe
Verteilung wie X, also Xn

d−→ X (sogar Fn = F für alle n).
Aber Xn −X = −2X hat Verteilung N(0, 4), also

P (|Xn −X| > ϵ) = P (|2X| > ϵ) > 0

für alle n und ϵ <∞. Somit Xn ̸ P−→ X.
Fazit: Konvergenz in Verteilung ist echt schwächer als Konvergenz in Wahrscheinlich-
keit.

Hierarchie der Konvergenzarten

Der folgende Satz ordnet die verschiedenen Konvergenzarten.
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Satz 5
[Hierarchie der Konvergenzarten] Für Zufallsvariablen Xn, X gelten folgende Implika-
tionen:

1. Xn → X in L2 ⇒ Xn
P−→ X.

2. Xn
a.s.−−→ X ⇒ Xn

P−→ X.

3. Xn
P−→ X ⇒ Xn

d−→ X.

4. Falls Xn
d−→ c für eine Konstante c, dann Xn

P−→ c.

Die Umkehrungen gelten im Allgemeinen nicht.

Beweis. (1) L2 ⇒ P : Sei ϵ > 0. Mit der Markov-Ungleichung:

P (|Xn −X| > ϵ) = P ((Xn −X)2 > ϵ2) ≤ E[(Xn −X)2]

ϵ2
→ 0.

(2) a.s. ⇒ P : Sei ϵ > 0 und definiere

An(ϵ) = {ω : |Xm(ω)−X(ω)| ≤ ϵ für alle m ≥ n}.

Dann ist (An(ϵ)) eine aufsteigende Folge und
∞⋃
n=1

An(ϵ) = {ω : lim
m→∞

Xm(ω) = X(ω)}.

Da Xn
a.s.−−→ X, ist P (

⋃∞
n=1An(ϵ)) = 1. Mit Stetigkeit von unten:

P (|Xn −X| ≤ ϵ) ≥ P (An(ϵ)) → 1.

Also P (|Xn −X| > ϵ) → 0.
(3) P ⇒ d: Sei t eine Stetigkeitsstelle von F und ϵ > 0. Dann:

Fn(t) = P (Xn ≤ t)

= P (Xn ≤ t,X ≤ t+ ϵ) + P (Xn ≤ t,X > t+ ϵ)

≤ P (X ≤ t+ ϵ) + P (|Xn −X| > ϵ)

= F (t+ ϵ) + P (|Xn −X| > ϵ).

Grenzübergang n→ ∞: lim supn→∞ Fn(t) ≤ F (t+ ϵ).
Analog: P (X ≤ t− ϵ) ≤ P (Xn ≤ t) + P (|Xn −X| > ϵ), also

F (t− ϵ) ≤ lim inf
n→∞

Fn(t) + 0.

Somit F (t− ϵ) ≤ lim inf Fn(t) ≤ lim supFn(t) ≤ F (t+ ϵ).
Da ϵ beliebig und F stetig bei t, folgt Fn(t) → F (t).
(4) d(c) ⇒ P : Sei F (t) = ⊮{t≥c} (Punktmasse bei c). Für ϵ > 0:

P (|Xn − c| > ϵ) = Fn(c− ϵ) + (1− Fn(c+ ϵ)).

Die Punkte c± ϵ (für ϵ > 0) sind Stetigkeitsstellen von F , daher:

Fn(c− ϵ) → F (c− ϵ) = 0, Fn(c+ ϵ) → F (c+ ϵ) = 1.

Also P (|Xn − c| > ϵ) → 0.
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5.3 Das Slutsky-Theorem

Das Slutsky-Theorem ist fundamental für Anwendungen, da es erlaubt, Konvergenz unter
stetigen Transformationen zu erhalten.

Satz 1
[Slutsky] Seien Xn, X, Yn Zufallsvariablen und g : R → R eine stetige Funktion. Dann
gilt:

1. Falls Xn
P−→ X, dann g(Xn)

P−→ g(X).

2. Falls Xn
d−→ X und Yn

P−→ c (Konstante), dann:

• Xn + Yn
d−→ X + c,

• Xn · Yn
d−→ c ·X,

• Xn/Yn
d−→ X/c (falls c ̸= 0).

Beweis. (1) Sei ϵ > 0. Da g stetig auf R ist, existiert für jedes kompakte K ⊂ R ein δ > 0 mit:
Falls x, y ∈ K und |x− y| < δ, dann |g(x)− g(y)| < ϵ.

Wähle K = [−M,M ] groß genug, sodass P (|X| ≤M) > 1− ϵ/2. Dann:

P (|g(Xn)− g(X)| > ϵ) ≤ P (|g(Xn)− g(X)| > ϵ, |X| ≤M, |Xn| ≤M)

+ P (|X| > M) + P (|Xn| > M)

≤ P (|Xn −X| > δ) + ϵ/2 + P (|Xn −X| > M − |X|)
→ 0 + ϵ/2 < ϵ.

(2a) Addition: Sei Fn, F die cdf von Xn, X und t eine Stetigkeitsstelle von F . Für ϵ > 0:

P (Xn + Yn ≤ t) = P (Xn + Yn ≤ t, |Yn − c| ≤ ϵ) + P (Xn + Yn ≤ t, |Yn − c| > ϵ)

≤ P (Xn ≤ t− c+ ϵ) + P (|Yn − c| > ϵ)

= Fn(t− c+ ϵ) + P (|Yn − c| > ϵ).

Grenzübergang: lim supP (Xn + Yn ≤ t) ≤ F (t − c + ϵ). Analog für liminf. Da ϵ beliebig:
P (Xn + Yn ≤ t) → F (t− c).

(2b) Multiplikation: Analog mit P (XnYn ≤ t) = P (Xn ≤ t/Yn) und Approximation Yn ≈
c.

5.4 Das Gesetz der großen Zahlen

Satz 1
[Schwaches Gesetz der großen Zahlen] Seien X1, X2, . . . iid mit E(Xi) = µ und
Var(Xi) = σ2 <∞. Dann gilt

Xn =
1

n

n∑
i=1

Xi
P−→ µ.
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Beweis. Mit der Tschebyschow-Ungleichung: Für ϵ > 0

P (|Xn − µ| > ϵ) ≤ Var(Xn)

ϵ2

=
1

ϵ2
Var

(
1

n

n∑
i=1

Xi

)

=
1

n2ϵ2

n∑
i=1

Var(Xi) (Unabhängigkeit)

=
nσ2

n2ϵ2
=

σ2

nϵ2
→ 0.

Satz 2
[Starkes Gesetz der großen Zahlen (ohne Beweis)] Unter denselben Voraussetzun-
gen gilt sogar

Xn
a.s.−−→ µ.

Bemerkung: Der Beweis des starken Gesetzes ist technisch anspruchsvoll und verwen-
det entweder Martingaltheorie oder die Borel-Cantelli-Lemmata. Siehe Durrett (2019) für
Details.

Beispiel 5.4.1

[Münzwurf und frequentistische Interpretation] Sei p ∈ (0, 1) die Wahrscheinlichkeit für
Kopf. Definiere

Xi =

{
1 Kopf beim i-ten Wurf,
0 Zahl beim i-ten Wurf.

Dann ist Xn die relative Häufigkeit von Kopf in n Würfen.
Nach dem Gesetz der großen Zahlen: Xn

P−→ p.
Interpretation: Die relative Häufigkeit konvergiert in Wahrscheinlichkeit gegen die
Wahrscheinlichkeit. Dies rechtfertigt die frequentistische Interpretation: Wahrschein-
lichkeit ist der Grenzwert der relativen Häufigkeit.
Quantitativ (mit Tschebyschow): Für n = 10000, p = 0,5, ϵ = 0,01:

P (|Xn − 0,5| > 0,01) ≤ Var(X1)

nϵ2
=

0,25

10000 · 0,0001
= 0,25.

Mit Wahrscheinlichkeit mindestens 75% liegt die relative Häufigkeit innerhalb von 1%
um 50%.
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5.5 Der zentrale Grenzwertsatz

Satz 1
[Zentraler Grenzwertsatz (CLT)] Seien X1, X2, . . . iid mit E(Xi) = µ und 0 < Var(Xi) =
σ2 <∞. Sei

Zn =

√
n(Xn − µ)

σ
=

∑n
i=1(Xi − µ)

σ
√
n

.

Dann gilt
Zn

d−→ N(0, 1),

d.h. für alle z ∈ R:
lim
n→∞

P (Zn ≤ z) = Φ(z),

wobei Φ die cdf der Standardnormalverteilung ist.
Äquivalent: Xn ist approximativ N(µ, σ2/n) verteilt.

Bemerkung: Der Beweis verwendet charakteristische Funktionen und ist technisch. Eine
Beweisskizze:

Beweisskizze via charakteristische Funktionen. Sei Yi = (Xi − µ)/σ, sodass E(Yi) = 0,
Var(Yi) = 1. Die charakteristische Funktion von Yi ist φ(t) = E(eitYi).

Taylor-Entwicklung (falls E(|Yi|3) <∞):

φ(t) = 1 + it · 0− t2

2
· 1 + o(t2) = 1− t2

2
+ o(t2).

Die charakteristische Funktion von Zn = 1√
n

∑n
i=1 Yi ist

φZn(t) =
n∏

i=1

φ(t/
√
n) = [φ(t/

√
n)]n

=

[
1− t2

2n
+ o(t2/n)

]n
→ e−t2/2 (mit (1 + x/n)n → ex).

Dies ist die charakteristische Funktion von N(0, 1). Nach dem Stetigkeitssatz von Lévy folgt
Zn

d−→ N(0, 1). □
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Beispiel 5.5.1

[Binomialverteilung] Sei Xi ∼ Bernoulli(p) iid. Dann E(Xi) = p, Var(Xi) = p(1− p).
Die Summe Sn =

∑n
i=1Xi ∼ Binomial(n, p) hat exakte Verteilung

P (Sn = k) =

(
n

k

)
pk(1− p)n−k.

Nach dem CLT:
Sn − np√
np(1− p)

≈ N(0, 1).

Numerisch: Für n = 100, p = 0,3 schätze P (Sn ≥ 35):
Exakt (mit Computer):

P (Sn ≥ 35) =
100∑
k=35

(
100

k

)
0,3k0,7100−k ≈ 0,1762.

CLT-Approximation:

P (Sn ≥ 35) ≈ P

(
Z ≥ 35− 30√

100 · 0,3 · 0,7

)
= P

(
Z ≥ 5√

21

)
= P (Z ≥ 1,091) ≈ 0,1377.

Mit Stetigkeitskorrektur (besser für diskrete Verteilungen):

P (Sn ≥ 35) ≈ P

(
Z ≥ 34,5− 30√

21

)
= P (Z ≥ 0,982) ≈ 0,1631.

Näher am exakten Wert!

Satz 2
[Berry-Esséen-Ungleichung] Falls E |X1 − µ|3 < ∞, dann existiert eine universelle
Konstante C mit

sup
z

|P (Zn ≤ z)− Φ(z)| ≤ C E |X1 − µ|3

σ3
√
n

.

Die beste bekannte Konstante ist C ≈ 0,4748.

Interpretation: Der Approximationsfehler ist O(n−1/2). Für Genauigkeit 0,01 benötigen
wir n ≈ 10000 (abhängig vom dritten Moment).
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5.6 Die Delta-Methode

Satz 1
[Delta-Methode] Sei g : R → R differenzierbar mit g′(µ) ̸= 0. Falls

√
n(Xn − µ)

σ

d−→ N(0, 1),

dann gilt √
n(g(Xn)− g(µ))

σ|g′(µ)|
d−→ N(0, 1).

Äquivalent: g(Xn) ist approximativ N(g(µ), σ2[g′(µ)]2/n) verteilt.

Beweis. Taylor-Entwicklung von g um µ:

g(Xn) = g(µ) + g′(µ)(Xn − µ) +Rn,

wobei Rn = o(|Xn − µ|) der Rest ist.
Multipliziere mit

√
n:
√
n(g(Xn)− g(µ)) = g′(µ)

√
n(Xn − µ) +

√
nRn.

Da Xn
P−→ µ (WLLN) und Rn = o(|Xn − µ|), gilt

√
nRn = oP (1) (verschwindet in Wahr-

scheinlichkeit).
Mit Slutsky:

√
n(g(Xn)− g(µ)) = g′(µ)

√
n(Xn − µ) + oP (1)

d−→ g′(µ) ·N(0, σ2) = N(0, σ2[g′(µ)]2).

Beispiel 5.6.1

[Konfidenzintervall für µ2] Seien X1, . . . , Xn iid mit E(Xi) = µ, Var(Xi) = σ2. Schätze
τ = µ2 durch τ̂ = X

2

n.
Mit g(x) = x2 ist g′(x) = 2x, also g′(µ) = 2µ. Nach der Delta-Methode:

√
n(X

2

n − µ2) ≈ N(0, 4µ2σ2).

Ein approximatives 95%-Konfidenzintervall für µ2:

µ2 ∈
[
X

2

n ± 1,96
2|Xn| · s√

n

]
,

wobei s die Stichprobenstandardabweichung ist.
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