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Kapitel 1

Ereignisse und Operationen

1.1 Einfuhrung

Wahrscheinlichkeitstheorie (kiinftig Wtheorie) ist die Mathematik zur Quantifizierung von Un-
sicherheit. Wir zeigen hier grundlegenden Konzepte und starten mit dem Ergebnisraum als
Menge aller mdglichen Ausgange.

1.2 Ergebnisraume und Ereignisse

Der Ergebnisraum (2 ist die Menge aller méglichen Ausgénge eines Experiments. Punkte
w € ) heiBen Ergebnisse, Realisierungen oder Elemente. Teilmengen von €2 nennen wir
Ereignisse.

Beispiel 1.2.1

Beim zweimaligen Munzwurf ist Q@ = {KK,KZ,ZK,ZZ}. Das Ereignis ’erster Wurf
ist Kopf’ist A = {KK, KZ}.

Beispiel 1.2.2

Sei w das Ergebnis einer physikalischen Messung, z. B. der Temperatur. Dann ist (2 =
R = (—o0,00). Man kénnte argumentieren, dass 2 = R ungenau ist, da Temperatur
eine untere Grenze besitzt. In der Praxis schadet es jedoch nicht, den Ergebnisraum
gréBer zu wahlen. Das Ereignis, dass die Messung gréBer als 10 aber hdchstens 23
ist, lautet A = (10, 23].
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Beispiel 1.2.3

Beim unendlich oft wiederholten Manzwurf ist
Q={w=(w1,ws,ws,...):w; €{K,Z}}.
Das Ereignis, dass der erste Kopf beim dritten Wurf erscheint, ist

E = {(w,ws,ws,...) w1 = Z,wy = Z,wy = K,w; € {K, Z} flri > 3}.

Mengenoperationen

Fur ein Ereignis A bezeichnen wir mit A° = {w € Q : w ¢ A} das Komplement von A (,nicht
A). Das Komplement von (2 ist die leere Menge 0.
Die Vereinigung von A und B ist

AUB={we:we Aoderw € B}

(,"A oder B). Fir eine Folge Ay, A,, ... ist
UAi = {w e Q:w e A, flir mindestens ein i} .
=1
Der Durchschnitt ist

ANB={weN:weAundw € B}

(,"A und B). Wir schreiben auch AB statt AN B. Fir eine Folge gilt
(NAi={weQ:we A firalei}.
=1

Die Differenzist A — B = {w : w € A,w ¢ B}. Ist jedes Element von A in B enthalten,
schreiben wir A C B. Fir eine endliche Menge A bezeichnet |A| die Anzahl ihrer Elemente.

Symbol Bedeutung

Q Ergebnisraum

w Ergebnis (Punkt, Element)
A Ereignis (Teilmenge von )
A° Komplement von A (nicht A)

AUB  Vereinigung (A oder B)

ANB  Durchschnitt (A und B)

A— B Mengendifferenz (w in A, aber nicht in B)
AcC B Inklusion

0 Leere Menge (unmogliches Ereignis)

Q Sicheres Ereignis

Ereignisse A;, A, ... heiBen disjunkt oder paarweise disjunkt, falls A, N A; = 0 fur
i # j. Eine Zerlegung (Partition) von  ist eine Folge disjunkter Mengen A, A,,... mit
U, 4i = Q.
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Die Indikatorfunktion von A ist

1 fallsw € A,

[y(w) = I(we A) = {0 falls w ¢ A.

Eine Folge A, A,, ... ist monoton wachsend, falls A; C A, C ---, und wir definieren
lim, . A, = U;2, 4;. Sie ist monoton fallend, falls A, > A, > ---, und dann lim,_,,, 4, =
Ni=; A;. In beiden Féllen schreiben wir A, — A.

Beispiel 1.2.4

Sei=Rund A; =[0,1/d) firi =1,2,....Dannist |J;~, A; = [0,1) und 2, 4; = {0}.
Definiert man stattdessen A4; = (0,1/i), soist | J;—; 4; = (0,1) und N2, 4; = 0.

Lemma 1

Sei Aj, A, ... eine monoton wachsende Folge von Ereignissen mit A = lim,,_,., A,.
Dann qilt
P(A) = lim P(A,).

n—00

Analog gilt fir eine monoton fallende Folge P(lim,, ,o, A,) = lim,,_,, P(A,).

Beweis. Fir monoton wachsende Folgen folgt dies direkt aus Theorem 1.8 (Stetigkeit von
Wabhrscheinlichkeiten). Fir monoton fallende Folgen A, D Ay, O --- ist Af € AS C ---
monoton wachsend mit

G Al = (ﬁ AZ) .
=1 i=1

Mit dem ersten Teil folgt

P (ﬂ AZ) —1-P (U Ag) = 1— lim P(A%) = lim P(A,). O
n—oo n—oo
i=1 =1

1.3 Wahrscheinlichkeit

Jedem Ereignis A ordnen wir eine reelle Zahl P(A) zu, die Wahrscheinlichkeit von A. Wir
nennen P auch eine Wahrscheinlichkeitsverteilung oder ein WahrscheinlichkeitsmaB.
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Definition 1

Eine Funktion P, die jedem Ereignis A eine reelle Zahl P(A) zuordnet, ist eine Wahr-
scheinlichkeitsverteilung oder ein WahrscheinlichkeitsmaB, falls folgende drei
Axiome gelten:

Axiom 1: P(A) > 0 fur jedes A

Axiom 2: P(Q) =1

Axiom 3: Sind A, A,, ... disjunkt, so gilt

Es gibt zwei gangige Interpretationen von P(A): die Haufigkeitsinterpretation und die
Glaubensgrad-Interpretation. In der Haufigkeitsinterpretation ist P(A) der langfristige An-
teil, mit dem A bei Wiederholungen eintritt. Sagen wir etwa, die Wahrscheinlichkeit fir Kopf
sei 1/2, so meinen wir, dass bei vielen Wirfen der Anteil von Kopf gegen 1/2 konvergiert.

In der Glaubensgrad-Interpretation misst P(A) die Starke der Uberzeugung eines Beob-
achters, dass A wabhr ist. In beiden Interpretationen missen die Axiome 1 bis 3 gelten. Der
Unterschied wird erst bei der statistischen Inferenz relevant und fihrt zu zwei Schulen: der
frequentistischen und der Bayesschen Statistik (siehe Kapitel 11).

Aus den Axiomen folgen viele Eigenschaften:

Satz 2
Far beliebige Ereignisse A, B gilt:

1. P(0) =0,

2. AC B= P(A) < P(B),

3. 0< P(A) <1,

4. P(A°) =1— P(A),

5. AnB=0= P(AUB) = P(A) + P(B).

Beweis. (1) Wahle A; = Qund A; = 0 firi > 2. Da A, A,, . .. disjunkt sind, folgt mit Axiom 3:

P(Q) =P (U Ai> =P(Q)+ Y _ P(0).
=1 =2
Mit Axiom 2 ist P(2) =1, also 1 =1+ > .°, P(0), woraus P(()) = 0 folgt.
(2) Ist A C B,soist B= AU (BN A°) eine disjunkte Vereinigung. Mit Axiom 3:
P(B) = P(A)+ P(BNA°) > P(A),

da P(B N A°) > 0 nach Axiom 1.
(3) Aus ) C A c Q folgt mit (1), (2) und Axiom 2: 0 = P()) < P(A) < P(Q) = 1.
(4) Da A und Ac disjunkt sind mit AU A¢ = (), folgt:

1 = P(Q) = P(AU A°) = P(A) + P(A°).
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(5) Folgt direkt aus Axiom 3 flr n = 2. n

Lemma 3
Fir beliebige Ereignisse A und B qilt

P(AUB)=P(A)+ P(B) - P(AN B).

Beweis. Wir zerlegen AU B = (AN B°) U (AN B) U (A°N B) in disjunkte Mengen. Durch
wiederholte Anwendung der Additivitat ergibt sich

P(AUB)=P(ANB°)+ P(ANB)+ P(A°N B)
=P(ANB°)+P(ANB)+ P(A°NB)+ P(ANB)— P(ANB)
P(A)+ P(B) — P(AN B). O

[Bonferroni-Ungleichung] Fir beliebige Ereignisse A und B qilt

P(ANB) > P(A) + P(B) — 1.

Beweis. Aus dem vorherigen Lemma folgt P(ANB) = P(A)+P(B)—P(AUB).Da P(AUB) <
1, ergibt sich die Behauptung. n

[Unionsschranke] FUr beliebige Ereignisse A4, ..., A, qilt

P <0Az) < zn:P(Ai)~

Beweis. Beweis durch Induktion. Fir n = 1 ist die Aussage trivial. Flr n = 2 folgt aus dem
Lemma:

P(A1UAy) = P(Ay) + P(Ay) — P(A1 N Ay) < P(Ay) + P(Ay),

da P(A; N Az) > 0. Sei die Aussage fur n — 1 bewiesen. Dann ist

(0[] ) () e

< ST P(A) + P(A) = 3 P4, =
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Beispiel 1.3.1

Zweimaliger Minzwurf. Sei H; das Ereignis ,"Kopf beim ersten Wurf und H, ,,"Kopf
beim zweiten Wurf. Sind alle Ergebnisse gleichwahrscheinlich, so ist

P(Hl UHQ) = P(H1) +P(H2) —P(HlﬂHg) =

N | —

1
2

Satz 6
[Stetigkeit von Wahrscheinlichkeiten] Gilt A,, — A, so folgt P(A,,) — P(A) fur n — oo.

Beweis. Sei A; C A, C --- monoton wachsend und A = lim,_,., A, = ;- 4;. Definiere
B, = Al, By = {Cd ce:we AQ,W ¢ Al}, Bs = {w TwE Ag,w ¢ Ag,w ¢ Al}, usw. Dann sind
By, B,,...disjunkt, A, = J, B, und |J;2, B; = U, A;- Nach Axiom 3 gilt

P(A) = P (U Bz) S Py

und somit

lim P(A,) = Jgngoi P(B;) = i P(B;) =P (G BZ-) = P(A). 0

1.4 Wahrscheinlichkeit auf endlichen Ergebnisraumen

Sei Q = {wy,...,w,} endlich. Beim zweimaligen Warfelwurf hat Q2 etwa 36 Elemente: Q2 =
{(i,7) : 1,5 € {1,...,6}}. Sind alle Ergebnisse gleichwahrscheinlich, so ist P(A) = |A|/36,
wobei | A| die Anzahl der Elemente von A bezeichnet.

Bei endlichem ) mit gleichwahrscheinlichen Ergebnissen gilt die Gleichverteilung:

)
€2
Um Wahrscheinlichkeiten zu berechnen, missen wir Elemente zahlen — sogenannte

kombinatorische Methoden. Einige wichtige Fakten:
Die Anzahl der Anordnungen von n Objekten ist n! = n(n — 1)(n —2)---3- 2 - 1. Definiti-

onsgeman ist 0! = 1. Ferner ist
ny\ n!
k) kl(n—k)

die Anzahl der Méglichkeiten, k& Objekte aus n auszuwahlen (,"n Uber k). Beispiel: In einer
Klasse von 20 Personen gibt es

20\ 20  20x19x 18
3/) 3171 3x2x1

P(A)

= 1140

Mdglichkeiten, ein 3-Personen-Komitee zu bilden.

Eigenschaften: (g> _ (Z) ~1, (Z) = (nik)
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1.5 Unabhangige Ereignisse

Wirft man zweimal eine faire Minze, ist die Wahrscheinlichkeit fur zweimal Kopf gleich % X %
Wir multiplizieren die Wahrscheinlichkeiten, weil wir die Wirfe als unabhangig betrachten.

Definition 1
Zwei Ereignisse A und B sind unabhangig, falls
P(ANB)=P(A)- P(B),

und wir schreiben A L B. Eine Menge von Ereignissen {A; : i € I} ist unabhangig,
falls fur jede endliche Teilmenge J C I gilt

P <ﬂAi> =[P«

Sind A und B nicht unabhéangig, schreiben wir A / B.

Unabhangigkeit kann auf zwei Arten entstehen: Entweder nehmen wir explizit an, dass
Ereignisse unabhangig sind (z. B. beim wiederholten Minzwurf), oder wir verifizieren P(AN
B) = P(A) - P(B).

Bemerkung 1.5.1. Sind A und B disjunkt mit P(A), P(B) > 0 so kénnen sie nicht unabhan-
gig sein, denn P(A) - P(B) > 0, aber P(AN B) = P(0) =

Beispiel 1.5.1

Faire Mlinze, 10 Wurfe. Sei A =,mindestens ein Kopf und 7; das Ereignis ,SZahl beim
j-ten Wurf. Dann ist

10 10
1
P(A)=1-P(A)=1-P(Tin---NTyp)=1-[[P(Ty) =1- <§> ~ 0,999.

i=1
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Beispiel 1.5.2

Zwei Personen versuchen abwechselnd, einen Basketball in den Korb zu werfen. Per-
son 1 trifft mit Wahrscheinlichkeit 1/3, Person 2 mit 1/4. Wie grof3 ist die Wahrschein-
lichkeit, dass Person 1 zuerst trifft?

Sei E das gesuchte Ereignis und A; das Ereignis ,érster Treffer im j-ten Versuch.
Person 1 wirft in den Versuchen 1, 3,5, ..., Person2in 2,4, 6, .... Esist

1.6 Bedingte Wahrscheinlichkeit

Definition 1
Falls P(B) > 0, ist die bedingte Wahrscheinlichkeit von A gegeben B definiert als

P(ANB)

P(A|B)=—p

Lemma 2
[Produktregel] Fur Ereignisse Ay, ..., A, mit P(A;N---NA,_1) > 0 gilt

P(AiN--NA) =P(A) - P(As | A1) - P(As | A1 N As) - P(Ay | At 0 Apy).

Beweis. Durch wiederholte Anwendung der Definition der bedingten Wahrscheinlichkeit:

P(A; N Ay)

P(Ay | Ay) - P(Ay),
P(Ay N As 1 Ay) -

P(Ay | A1 0 As) - P(A; N Ay)
P(As | Ay N Ay) - P(Ay | Ay) - P(A,).

Fortsetzen dieser Argumentation liefert die Behauptung. O

Fir festes B mit P(B) > 0 definiert P(- | B) ein neues Wahrscheinlichkeitsmaf auf €.
Insbesondere gelten die Axiome:

1. P(A| B) > 0furalle A,
2. P2 B) =1,

3. Sind Ay, A, ... disjunkt, soist P(IJ:2, A; | B) = >, P(A; | B).



1.6. BEDINGTE WAHRSCHEINLICHKEIT 13

Beispiel 1.6.1

[Medizinischer Test] Ein Test flr eine Krankheit D hat Ergebnisse + (positiv) und —
(negativ). Die Sensitivitat ist P(+ | D) = 0,993, die Spezifitdt P(— | D) = 0,9999. Die
Pravalenz sei P(D) = 0,0001. Wie groB ist P(D | +)?
Nach der Definition der bedingten Wahrscheinlichkeit ist

P(DN+) P(+|D)-P(D)

PO ="p0 =7 P

Mit dem Gesetz der totalen Wahrscheinlichkeit (Satz 1.7) gilt

P(+)=P(+ | D)-P(D)+ P(+ | D% - P(D°)
= 0,993 x 0,0001 4+ 0,0001 x 0,9999 = 0,00019992.

Somit ist D608 5 (.00
X
P(D = - ’ ~ 0,497.
( l +) 0,00019992 Uil

Trotz hoher Sensitivitat und Spezifitat ist die Wahrscheinlichkeit, tatséchlich krank zu
sein, nur etwa 50 %, da die Krankheit selten ist.

Lemma 3

Sind A und B unabhéngig, so gilt P(A | B) = P(A). Zudem sind dann auch A und B¢,
A¢und B sowie A° und B¢ unabhangig.

Beweis. Aus A | Bfolgt P(ANB) = P(A)- P(B), also

Fur die Unabhangigkeit von A und B¢ schreiben wir A = (AN B) U (A N B°) als disjunkte
Vereinigung:

P(ANB) = P(A) — P(AN B) = P(A) — P(A) - P(B)
= P(A)(1 - P(B)) = P(A)- P(B°).

Alsoist A | B¢. Analog zeigt man A¢ | B.

Fiar A¢ 1 B° wenden wir das eben Bewiesene auf A° und B an: Da A L B, ist auch
A° 1 B, und daraus folgt A° L B°. ]
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Beispiel 1.6.2

Ziehen zweier Karten ohne Zuricklegen. Sei A = ,érste Karte ist Herz-As und B =
.Bweite Karte ist Herz-2. Dann ist

1 1

Uberraschenderweise ist P(B | A) = P(B | A°), also P(B | A) = P(B). Somit sind A
und B unabhangig.

1.7 Satz von Bayes

Satz 1

[Gesetz der totalen Wahrscheinlichkeit] Sei A,,..., A; eine Zerlegung von Q mit
P(A;) > 0 fur alle :. Dann gilt fUr jedes Ereignis B

k
P(B)= Y P(B| A))- P(4).

i=ll

Beweis. Definiere C; = BN A;. Dann sind C4,. .., Cj disjunkt und B = Ule C;. Somit

P(B)=)_ P(C;)) =) P(BNAj) =) P(B|4)-P(4). O

Satz 2
[Satz von Bayes] Sei A;,..., A eine Zerlegung von Q mit P(A;) > 0 fur alle 7. Falls
P(B) > 0, so gilt fir jedes i € {1,...,k}
P(B | 4;) - P(A)
Y P(B| 4;)- P(4;)

P<Ai|B):

Bemerkung 1.7.1. Wir nennen P(A;) die A-priori-Wahrscheinlichkeit (engl. prior probabi-
lity) und P(A; | B) die A-posteriori-Wahrscheinlichkeit (engl. posterior probability).

Beweis. Zweimalige Anwendung der Definition der bedingten Wahrscheinlichkeit liefert

P(A;NnB) _ P(B|A)- P(A)
P ==pE = R

Mit dem Gesetz der totalen Wahrscheinlichkeit folgt die Behauptung. O
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[Bayes fur zwei Ereignisse] Sind A und B Ereignisse mit P(A), P(B) > 0, so gilt

P(B | A) - P(A)
(B|A)-P(A)+P(B| A°)- P(A°)

P(A|B) = -

Beweis. Spezialfall des Satzes von Bayes mit der Zerlegung {A, A°}. O

Beispiel 1.7.1

[E-Mail-Klassifikation] Ich teile E-Mails in drei Kategorien: A; = SSpam", A, = niedrige
Prioritat", A3 = ,"hohe Prioritat. Aus Erfahrung weiB3 ich: P(A;) = 0,7, P(Az) = 0,2,
P(A;) = 0,1. Sei B = ,E-Mail enthalt Wort ,frei. Die bedingten Wahrscheinlichkeiten
sind:

P(B|A)) =09, P(B|A)=0,01, P(B|A3)=0,01.

Erhalte ich eine E-Mail mit dem Wort ,frei, wie grof3 ist die Wahrscheinlichkeit, dass
es Spam ist? Nach Bayes gilt

P(B| A1) - P(Ay)
(B | A1) - P(A1) + P(B| Az) - P(A2) + P(B | A3) - P(43)
B 0,9 x 0,7
©0,9%0,74+0,01 x0,24+0,01 x 0,1
0,63

= 2 ~0,995.
0,633

P<A1|B):P

Die E-Mail ist mit hoher Wahrscheinlichkeit Spam.

1.8

Ist der Ergebnisraum €2 grof3 (z. B. 2 = R), kann man nicht jedem beliebigen Ereignis A C Q
eine Wahrscheinlichkeit zuordnen. Stattdessen beschrankt man sich auf eine Klasse von
Mengen, die eine o-Algebra (oder o-Feld) bildet.

Definition 1

Eine Familie A von Teilmengen von ) heif3t o-Algebra, falls gilt:
1. 0 e A,
2. Ist A € A, soauch A° € A,
3. Sind A, A,,... € A, soist|J;2, A; € A.

Die Mengen in A hei3en messbar. Das Paar ({2, .A) nennt man messbarer Raum. Ist P
ein Wahrscheinlichkeitsmaf auf A, so heif3t (22, A, P) Wahrscheinlichkeitsraum.
Ist 2 = R, wahlt man A als kleinste o-Algebra, die alle offenen Teilmengen enthélt — die
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sogenannte Borel-o-Algebra.



Kapitel 2

Zufallsvariablen

2.1 Einfuhrung

In der Wahrscheinlichkeitstheorie arbeiten wir zunachst mit einem abstrakten Modell eines
Zufallsexperiments:

» Der Ergebnisraum (auch Stichprobenraum, Sample Space) 2 ist die Menge aller
moglichen Ergebnisse des Experiments.
Beispiel Wurfelwurf: Q@ = {1,2,3,4,5,6}.

 Ereignisse sind Teilmengen von €, fur die wir Wahrscheinlichkeiten definieren kdnnen.
Beispiel: ,gerade Augenzahl“ = {2,4,6}.

Das Modell ist rein mathematisch-abstrakt. Die Elemente von Q2 missen nicht einmal

Zahlen sein (z. B. beim Miinzwurf: 2 = {Kopf, Zahl} oder beim Wetter: 2 = {Sonne, Regen, Schnee, . ..
In Statistik und Data Mining haben wir jedoch konkrete Daten — also Zahlen, Katego-

rien, Texte, Bilder usw., mit denen wir rechnen, visualisieren und Muster finden wollen.
Die Zufallsvariable ist genau das Bindeglied, das die abstrakte Wahrscheinlichkeits-

theorie mit den realen Daten verbindet.

Was ist eine Zufallsvariable?

Eine Zufallsvariable X ist eine messbare Funktion, die jedem mdglichen Ereignis w € 2
einen beobachtbaren Wert zuordnet:

X :Q — R (oderin einen anderen messbaren Raum)

Sie Ubersetzt also das zuféllige Ereignis in etwas Konkretes, das wir messen oder be-
obachten konnen.

Beispiel 2.1.1

Wirfelwurf

Ergebnisraum Q = {1,2,3,4,5,6} (hier sind die Elemente schon Zahlen, aber das ist
Zufall).

Zufallsvariable X (w) = w — X ist einfach die Augenzahl.

Daten: Wenn wir 100-mal wirfeln, erhalten wir eine Liste von beobachteten Werten
x1,%9,...,2T100 (2.B. 3,5, 1, ...). Das sind Realisationen der Zufallsvariablen X.

17
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Beispiel 2.1.2

Miinzwurf

Q2 = {Kopf, Zahl}

Zufallsvariable X: Kopf — 1, Zahl — 0

Jetzt kbnnen wir mit Zahlen rechnen (Erwartungswert, Varianz usw.).
Daten: Eine Sequenz von Oen und 1en.

Beispiel 2.1.3

KorpergroBe in einer Population

Das ,Experiment® ist: ,wéhle zufallig eine Person aus”.

Q2 ist extrem komplex (alle genetischen, umweltbedingten Faktoren usw.).
Zufallsvariable X (w) = KdrpergroéBe dieser Person in cm.

Wir beobachten nur die Werte von X (z.B. 171, 168, 182, ... cm). Den zugrunde
liegenden Ergebnisraum 2 sehen wir nie direkt.

Warum ist die Zufallsvariable so wichtig fur Statistik/Data
Mining?

+ Sie ermdglicht es, Wahrscheinlichkeiten auf die Daten zu tbertragen:
P(X < 170) statt P(Ereignis ,Person < 170 cm®).

+ Alle statistischen Konzepte (Erwartungswert, Varianz, Verteilung, Konfidenzintervalle,
Hypothesentests, Regressionsmodelle, Clustering, ...) sind auf Zufallsvariablen defi-
niert.

» Unsere Daten sind nichts anderes als beobachtete Realisationen (Samples) einer
oder mehrerer Zufallsvariablen.
Wir modellieren sie meist als unabhangig und identisch verteilt (i.i.d.).

Zusammengefasst:
Der Ergebnisraum und die Ereignisse liefern das theoretische Fundament der Wahrschein-
lichkeit. Die Zufallsvariable ist die Briicke, die dieses Fundament mit den tatsachlichen
Daten verbindet, mit denen Statistik und Data Mining arbeiten.

Statistik und Data Mining befassen sich mit Daten. Wie verbinden wir Ergebnisrdume
und Ereignisse mit Daten? Das Bindeglied ist die Zufallsvariable.

Definition 1

Eine Zufallsvariable ist eine Abbildung
X :Q—-R,

die jedem Ergebnis w eine reelle Zahl X (w) zuordnet.

Ab einem gewissen Punkt in den meisten Wahrscheinlichkeitsvorlesungen wird der Er-
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gebnisraum kaum noch erwahnt und wir arbeiten direkt mit Zufallsvariablen. Man sollte je-
doch im Hinterkopf behalten, dass der Ergebnisraum stets vorhanden ist.

Beispiel 2.1.4

Zehnmaliger Minzwurf. Sei X (w) die Anzahl der Képfe in der Sequenz w. Beispiel: Ist
w=KKZKKZKKZZ, soist X(w) = 6.

Beispiel 2.1.5

Sei Q = {(z,y) : z*+y* < 1} die Einheitskreisscheibe. Wahlen wir zufallig einen Punkt
aus (2. Ein typisches Ergebnis hat die Form w = (z,y). Beispiele fur Zufallsvariablen
sind X(w) =z, Y(w) =y, Z(w) =z +y und W(w) = 22 + >

Fir eine Zufallsvariable X und eine Teilmenge A C R definieren wir X~!1(A) = {w € O :
X(w) € A} und setzen

PXecA) =PX ' A)=PHwe: X(w) A,
P(X=2)=PX (z2)=PHwecQ: X(w) =x}).

Beachten Sie: X bezeichnet die Zufallsvariable, = einen konkreten Wert.

Beispiel 2.1.6

Zweimaliger Minzwurf, X = Anzahl der Képfe. Dann ist P(X = 0) = P({ZZ}) = 1/4,
P(X =1)=P{KZ,ZK}) =1/2und P(X =2) = P{KK}) = 1/4. Zusammenfas-
sung:

w  P(w}) X(w)

r P(X =u1)
ZZ 1/4 0
% ua 1 o
KZ 1/4 1 5 1/
KK  1/4 2

2.2 Verteilungsfunktionen und Wahrscheinlichkeitsfunktio-
hen

Definition 1

Die kumulative Verteilungsfunktion (engl. cumulative distribution function, cdf) ist
die Funktion Fy : R — [0, 1] definiert durch

Fx(z) = P(X < x).
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Die cdf enthalt alle Informationen (iber die Zufallsvariable. Oft schreiben wir kurz F' statt
Fx.

Beispiel 2.2.1

Zweimaliger fairer Minzwurf, X = Anzahl Képfe. Dannist P(X =0) = P(X =2)=1/4
und P(X = 1) = 1/2. Die Verteilungsfunktion lautet

0 r <0,
1/4 0<z<1,
3/4 1<x<2,
1 T > 2.

Fx(ﬂf) =

Die Funktion ist rechtsseitig stetig, monoton wachsend und fiir alle = definiert, obwohl
X nur Werte 0, 1,2 annimmt. Warum ist Fix(1,4) = 0,757

Satz 2

Haben X die cdf F' und Y die cdf G mit F(z) = G(x) fur alle z, so ist P(X € A) =
P(Y € A) fur alle A.

Beweis. Es genigt zu zeigen, dass P(X € A) = P(Y € A) fur alle Intervalle A gilt, da sich
alle Borel-Mengen aus Intervallen erzeugen lassen. Fir ein Intervall A = (—oo, z] ist per
Definition

P(X € A)=F(x) =G(z) = P(Y € A).

Durch Mengendifferenzen und abzahlbare Vereinigungen solcher Intervalle folgt die Aussa-
ge far alle Borel-Mengen. O]

Satz 3

Eine Funktion F': R — [0, 1] ist genau dann die kumulative Verteilungsfunktion (CDF)
eines WahrscheinlichkeitsmaB3es P auf (R, B(R)), d. h.

F(z) = P((—o0,z]),
wenn sie die folgenden Eigenschaften erflllt:
1. Monoton nichtfallend: z; < 2, — F(x;) < F(z2),
2. Normierung: lim, , ., F(z) =0, lim, . F(z) =1,

3. Rechtsstetig: F(z) = lim,, F(y) fur alle z € R.

Beweis. ,,=* (CDF = Eigenschaften).
Sei F(x) = P((—o0, z]) fir ein Wahrscheinlichkeitsmal3 P.

* Monotonie: z; < 3 = (—o0, 21| C (=00, 23] = F(x1) < F(x3).
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« Normierung: lim,_,, F(z) = P(R) = 1undlim,_, ., F(z) = P(0) =0 (da), (—o0,z,] =
(0 far x,, — —o0).

+ Rechtsstetigkeit: lim,,|, F'(y) = lim,, P((—o0,y]) = P((—o0, z]) (Stetigkeit von oben fur
die abnehmende Folge (—o0, 9|, v | ).

»<=" (Eigenschaften = existiert eindeutiges P).
Definiere fir a < b

p((a,b]) == F(b) — F(a).

(Die Monotonie sichert > 0; fir a = —oo bzw. b = oo verwenden wir die Grenzwerte.)

Die Menge S = {(—o0,z] : x € R} U{(a,b] : a < b} U {0, R} ist ein Semiring, und y ist auf
disjunkten endlichen Vereinigungen additiv (folgt aus Monotonie und Rechtsstetigkeit).

Wegen der Rechtsstetigkeit ist ;1 sogar o-additiv auf dem von S erzeugten Ring (das
ist der kritische Schritt: die Rechtsstetigkeit verhindert ,Massenspriinge“ und garantiert die
o-Additivitat bei abz&hlbaren disjunkten Vereinigungen von Halbintervallen).

Nach dem Carathéodoryschen Erweiterungssatz existiert eine eindeutige Erweiterung
von p zu einem Wahrscheinlichkeitsmaf3 P auf der o-Algebra B(R).

SchlieBlich gilt per Konstruktion

P((—00,z]) = lim p((—o0,y]) = lim F(y) = F(x)
ylx ylx
(Rechtsstetigkeit), also ist F' die CDF von P.
Eindeutigkeit folgt daraus, dass die Halbintervalle (—oc, 2| ein 7-System sind, das die
Borel-o-Algebra erzeugt, und zwei Mal3e, die auf einem erzeugenden 7-System (berein-
stimmen, sind gleich (Eindeutigkeitssatz fir Maf3e). O

Motivation

Das auBere MaB (outer measure) ist ein zentrales Konzept der Maftheorie, das es ermég-
licht, aus einer ,vorbereiteten* Mengenfunktion (z. B. einem Pramal auf einem Ring oder
Semiring) eine Mengenfunktion auf der gesamten Potenzmenge zu konstruieren. Es dient
als Zwischenschritt im Carathéodoryschen Erweiterungssatz, um ein echtes Maf auf einer
o-Algebra zu erhalten (z. B. das Lebesgue-Maf3 oder Wahrscheinlichkeitsmaf3e aus CDFs).

Definition 4

[AuBeres MaR aus einem Prdmaf] Sei X eine Menge und R ein Ring (oder Semiring)
von Teilmengen von X. Sei gy : R — [0, 00] ein PramaB (d. h. uo(?) = 0 und o-additiv
auf disjunkten Vereinigungen in R).

Das zugehdrige auBere MaB * : P(X) — [0, oo ist definiert durch

A, R, EC GAn},

n=1

p*(E) := inf {Z f1o(An)

wobei das Infimum Uber alle abzahlbaren Uberdeckungen von E durch Mengen aus
R genommen wird. (Falls keine solche Uberdeckung existiert, setzt man p*(£) = oc.
Die leere Summe ist 0, also p*() = 0.)
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Allgemeiner kann man ein aufBeres Maf direkt axiomatisch definieren:

Definition 5

[AuBeres MaB (axiomatisch)] Eine Funktion p* : P(X) — [0, 0] heiBt duBeres MaB,
wenn

1. wi(0) =0,
2. Monotonie: E C F' = u*(E) < p*(F),

3. abzahlbare Subadditivitat: Fir beliebige F,, C X gilt

Wichtige Eigenschaften

Das aus einem Pramaf3 p konstruierte p* ist tatsachlich ein auBeres Maf3 und erflllt
zusatzlich:

« u* erweitert po: Fir alle A € R gilt 1*(A) = po(A).

* Falls 1y o-endlich ist, hat ©* weitere Regularitatseigenschaften.

Bemerkungen

» Das auBere MafB ist im Allgemeinen nicht additiv, sondern nur subadditiv. Additivitat
gilt nur fir messbare Mengen (im Sinne von Carathéodory).

« Beispiel: Das Lebesgue-auBere MaB auf R entsteht aus der Langen-/Volumenfunktion
auf Quadern/Halbintervallen.

* Im Kontext von WahrscheinlichkeitsmaBen: Aus der durch eine CDF F definierten
po((a,b]) = F(b) — F(a) entsteht ein duBeres Mal3, das dann via Carathéodory zu
einem Wahrscheinlichkeitsmaf3 auf den Borelmengen eingeschrankt wird.
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Der Carathéodorysche Erweiterungssatz

Lemma 7

[Carathéodoryscher Erweiterungssatz] Sei p* ein auBeres Mal3 auf X. Eine Menge
A C X heiB3t y*-messbar (im Sinne von Carathéodory), wenn fir alle S C X gilt

p(S) = p(SNA) + (S N AY).
Dann gilt:
1. Die Menge M aller p*-messbaren Mengen ist eine o-Algebra.
2. Die Einschrankung p := p*| ¢ ist ein vollstandiges Maf3 auf M.

3. Falls 1 ein Pramaf auf einem Ring R war und p* daraus konstruiert wurde, so
ist 1 eine Erweiterung von p (d. h. u|lr = po)-

4. Falls zusétzlich p o-endlich ist (d.h. X = |J, X, mit po(X,) < o0), so ist die
Erweiterung 1. auf der von R erzeugten o-Algebra o(R) eindeutig.

Bemerkungen

» Der kritische Punkt ist der Nachweis, dass M eine o-Algebra ist (insbesondere o-
Additivitdt der messbaren Mengen). Dies erfordert die Monotonie und Subadditivitat
des auf3eren Maf3es.

« Fir das Lebesgue-MaB auf R?: Starte mit y((a, b)) = £(b) — ¢(a) (LA&nge) auf dem Se-
miring der Halbintervalle, konstruiere ;*, wende Carathéodory an — Lebesgue-Maf3.

* Im Kontext von WahrscheinlichkeitsmaBBen auf R (wie im CDF-Beweis): Das durch
F(b) — F(a) definierte . auf Halbintervallen ist ein Pramafi (wegen Rechtsstetigkeit
o-additiv), und der Satz liefert die Erweiterung auf die Borel-o-Algebra.

» Die o-Endlichkeit sorgt fur Eindeutigkeit; ohne sie kann es mehrere Erweiterungen
geben.

Der vollstdndige Beweis (insbesondere der o-Algebra-Nachweis) findet sich in Standard-
werken wie Billingsley Probability and Measure, Bauer Wahrscheinlichkeitstheorie oder El-
strodt Maf3- und Integrationstheorie.

Diskrete Zufallsvariablen

Definition 8

X ist diskret, falls sie abzahlbar viele Werte {x;, 25, ...} annimmt. Die Wahrschein-
lichkeitsfunktion (engl. probability mass function, pmf) ist
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Lemma 9

Fir eine diskrete Zufallsvariable X mit Wertebereich {z;, xo, ...} gilt:
1.3 fx(@) =1,
2. Fy(z) = P(X <2) =Y, o fx(xi).

Beweis. (1) Die Ereignisse {X = x;} furi = 1,2, ... bilden eine Partition von , d. h. sie sind
paarweise disjunkt und ihre Vereinigung ist 2. Mit Axiom 3 der Wahrscheinlichkeitstheorie
folgt:

1=P(Q)=P (U{X = xi}> = ZP(X =) = fo(xi).

(2) Das Ereignis {X < z} ist die disjunkte Vereinigung aller Ereignisse {X = z;} mit
x; < x. Mit Axiom 3 folgt:

Fx(z)=P(X <z)=P (U {X = xi}> =) P(X =)= fx(x) O

z;<w z;<w

Visuelle Struktur der Beweisflihrung
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Beziehung zwischen pmf und cdf

Differenzen
Summation

Werte an einzelnen Kumulative Summe
Punkten z; >wi<a Sx (@)

Axiomatische Struktur

25
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Beispiel 2.2.2

2.2 Zweimaliger fairer Minzwurf, X = Anzahl der Képfe.
Wertebereich: {0, 1,2}
PMF:

Verifikation von Lemma (1):
1 1
E fX xz — + = Z =1 Vv

CDF aus Lemma (2):
z <0

0<r<l
1<x<?2
Tz > 2

5!
<
&
S~—
I
— o= O

Berechnung:

=3 fxlw) = fx(0) =4

x; <0

1 1 3
Izqfxivz— 0) + fx(1) = it3=1
= > fx(@s) = fx(0) + fx(1) + fx(2) = 1
x; <2

Visualisierung: PMF und CDF

] x
2

o —e
—
N
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Stetige Zufallsvariablen

Definition 10

X ist stetig, falls es eine Funktion fx gibt, sodass fx(z) > 0furalle z, [~ fx(z)dz =
1 und fUr jedes A C R qilt

P(X € A) = /A el i

Die Funktion fx hei3t Wahrscheinlichkeitsdichtefunktion oder Dichte (engl. pro-
bability density function, pdf).

Fir stetige Zufallsvariablen gilt P(X = z) = 0 fir alle = und
Felo)= [ fsd, fxle) = Fi(o)

an allen Stellen, wo Iy differenzierbar ist.

Beispiel 2.2.3
Sei X mit pdf

0 sonst.

fx(x):{1 O<z<l,

Dies ist die Gleichverteilung auf (0, 1), geschrieben X ~ Uniform(0, 1). Die cdf ist

0 z<0,
Fx(x)=<qz 0<z<1,
1 z>1.

Beispiel 2.2.4

Sei fx(x) =32*fir 0 < x < 1und fx(x) = 0 sonst. Dann ist

. 0 zz<0,
FX(:U):/ fx@®)dt=<23 0<z<1,
- 1 z>1.

Ferner ist P(X € [0,1,0,5)) = [\ 32% dx = [27])7 = 0,124.
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Lemma 11

Sei F' die cdf einer Zufallsvariable X. Dann gilt:
1. P(X = 2) = F(x) — limyp, F(y),
2. Pe< X <y)=F(y) — F(x),
3. P(X >z)=1-— F(x),
4. Falls X stetig ist, gilt P(X = z) = 0 fir alle z.

Definition 12
Sei X eine Zufallsvariable mit cdf F. Das inverse cdf oder Quantilfunktion ist

F(q) =inf{x: F(x) > ¢}

fir ¢ € [0,1]. Falls F streng monoton wachsend und stetig ist, dann ist F~'(q) die
eindeutige Lésung von F(z) = q.

2.3 Wichtige diskrete Verteilungen

Punktmasse (Dirac-Verteilung)

Definition 1

Eine Zufallsvariable X hat eine Punktmasse-Verteilung (auch Dirac-Verteilung),
geschrieben X ~ §,, falls

P(X =a)=1.
Die gesamte Wahrscheinlichkeitsmasse ist auf den einzelnen Punkt a konzentriert.
PMF:
1 falls z = a,
fx(e) = {0 sonst.
CDF:

0 fallsz <a
Fy(z) = ’
x(z) {1 falls z > a.
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Beispiel 2.3.1

Eine Zufallsvariable X, die den Wert 5 mit Sicherheit annimmt, also X ~ 6s.
* Die ,zuféllige"Wahl einer festen Zahl
+ Eine Konstante als Zufallsvariable betrachtet

« P(X=5)=1,P(X#5)=0

Eigenschaften

« Erwartungswert: F[X] =«
+ Varianz: Var(X) = 0 (keine Streuung!)
+ Entropie: H(X) = 0 (keine Unsicherheit)

» Grenzfall: Deterministische Variable (keine echte Zufélligkeit)

29
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Visualisierung: PMF und CDF fiir J5

fx(z) Fy(x)
1 1

@n)

8
@n)

I
8

2 3 4 5 6 2 3 4 5 6

Konzeptuelle Darstellung

h

Vergleich: Punktmasse vs. andere diskrete Verteilungen

f(z) f(z) f(z)
a 0 1
Punktmasse Bernoulli Diskret Uniform

5a p=0.6 {1,2,3,4,5)
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Mathematische Eigenschaften im Detail

Eigenschaft Wert flir o,
Trager (Support) {a}
Erwartungswert EX]=a
Varianz Var(X) =0
Standardabweichung ox =0
Schiefe (Skewness) Nicht definiert
Kurtosis Nicht definiert
MGF Mx(t) = e“t

Charakteristische Funktion ¢y (t) = e

Anwendungen

* Modellierung von Sicherheit: Wenn ein Ereignis mit Sicherheit eintritt

Grenzfalle: Approximation durch sehr konzentrierte Verteilungen

Dirac-Delta-Funktion: Kontinuierliche Verallgemeinerung in der Analysis

» Bayessche Statistik: Prior-Verteilung bei exaktem Vorwissen

Anfangsbedingungen: Startpunkt in stochastischen Prozessen
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Konvergenz zu Punktmasse

Betrachte eine Folge von Normalverteilungen mit schrumpfender Varianz:

Dichte
oc—0

Konvergenz
ZU d, /

Vergleich: PMF-Darstellung verschiedener Verteilungen

Wahrscheinlic:hkeit1 0

I [I]] l/ertebereich

Punkt Bernoulli inomial Uniform

Diskrete Gleichverteilung

Definition: X nimmt endlich viele Werte {x1,...,zx} an mit gleicher Wahrscheinlichkeit
P(X =ux;) = ¢ furalle i.

Beispiel: Wiirfelwurf mit einem fairen sechsseitigen Wiirfel: Werte {1,2,3,4,5,6}, jeweils
mit Wahrscheinlichkeit 1/6.

Bernoulli-Verteilung

Definition: X < {0,1} mit P(X = 1) = pund P(X = 0) = 1—p, p € [0,1]. PMF:
f(z) = p"(1 — p)t== fur z € {0,1}. Modelliert einen einzelnen Versuch mit zwei Ausgan-
gen (Erfolg/Misserfolg).

Beispiel: Minzwurf mit einer fairen Minze: p = 0,5 flr Kopf (X = 1) bzw. Zahl (X = 0).
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Binomialverteilung

Definition: X ~ Binomial(n,p) ist die Anzahl der Erfolge in n unabh&ngigen Bernoulli-
Versuchen mit Erfolgswahrscheinlichkeit p. PMF:

P(X = k) = (Z)pk(l —p)"k k=0,...,n.

Beispiel: Anzahl der Képfe bei n = 10 Wrfen einer fairen Minze (p = 0,5).

Geometrische Verteilung

Definition: X ~ Geometrisch(p) ist die Anzahl der Versuche bis zum ersten Erfolg in einer
Sequenz unabhangiger Bernoulli-Versuche mit Erfolgswahrscheinlichkeit p. PMF:

PX=k=00-p"'p, k=123,...

Beispiel: Anzahl der Wirfe mit einem fairen Warfel (p = 1/6 fUr eine Sechs), bis die erste
Sechs erscheint.

Poisson-Verteilung

Definition: X ~ Poisson(A), A > 0, modelliert die Anzahl seltener Ereignisse in einem festen

Intervall. PMF: i

A
_ =
P(X—k’)—@ E,

Approximiert Binomial(n, p) fir gro3es n und kleines p mit np = \.
Beispiel: Anzahl der eingehenden Anrufe in einem Callcenter pro Stunde, wenn im Mittel
A = 4 Anrufe pro Stunde erwartet werden.

k=0,1,2,...

2.4 Wichtige stetige Verteilungen

Gleichverteilung (Uniform)

X ~ Uniform(a, b) mit pdf

1
f(x):b_a, a<x<b.

Normalverteilung (GauB-Verteilung)
X ~ N(u,o?) mit pdf

f(x):\/;?exp<—(x2;f)z), reR

w ist der Erwartungswert, o2 die Varianz. N(0, 1) ist die Standardnormalverteilung.

Exponentialverteilung
X ~ Exp(p) mit § > 0 hat die pdf

f(z) = %ex/ﬁ, x> 0.

Die Exponentialverteilung ist gedachtnislos: P(X > s+t | X > s) = P(X > t) fur alle
s,t > 0.
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Gamma-Verteilung
X ~ Gamma(q, 5) mit a, 8 > 0 hat die pdf

!
BT (e)

te™B x>0,

()

wobei I'(o) = 7 t* e dt die Gamma-Funktion ist.

Beta-Verteilung
X ~ Beta(a, f) mit «, 5 > 0 hat die pdf

flz) = Mz“_l(l —2)t 0<z< 1.

INCHINE)

t-Verteilung

X ~ t, mit v Freiheitsgraden hat die pdf

(v +1)/2) 22\
Hz) = Vi T(v/2) (1+ ,/) , T€eR.

x>-Verteilung

X ~ x2 mit v Freiheitsgraden ist ein Spezialfall der Gamma-Verteilung: x? = Gamma(v/2, 2).

2.5 Bivariate Verteilungen

Definition 1
Die gemeinsame cdf von (X, Y) ist

Fxy(r,y) = P(X <z,Y <y).

Definition 2

Im diskreten Fall ist die gemeinsame pmf

f)@y(l’,y) = P(X = l’,Y = y)

Im stetigen Fall ist die gemeinsame pdf eine Funktion fxy mit fxy(z,y) > 0,
[ fxy(z,y)dxdy =1 und

P((X,Y)e A) = //A fxy(z,y) dz dy.



2.6. RANDVERTEILUNGEN

Beispiel 2.5.1

Werfen zwei faire Wirfel. Sei X das Minimum und Y das Maximum. Dann ist
2 1

Beispiel 2.5.2

Sei (X,Y) gleichverteilt auf dem Einheitsquadrat [0, 1] x [0, 1]. Dann ist

fxy(z,y) =1, O0<zy<l.

2.6 Randverteilungen

Definition 1

Im diskreten Fall sind die Randdichten

fx@) =Y fxy(@y), Fly)=>_ fxy(zy).

Beispiel 2.6.1
Far die Tabelle aus Beispiel 2.18 ist
1 2 1 1 1 4 1 1 1
fX(O):§+§+0=§, fX(l):§+0+§:§7 fX(2):E+§+E

Definition 2

| Im stetigen Fall sind die Randdichten

fX(fU):/fX,Y(w,y)dy, Iy (y) :/fxyy(ﬂf,y)dx.

Beispiel 2.6.2

Sei fx,y(z,y) = ¢z +y?) fur 0 < z,y < 1. Dann ist

1 31
6 ) 6 y 6 1
— e dy = — 2| == — 0<z<l
fx(x) /05($+y) y 5{xy+3]0 5(x+3), 5
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2.7 Unabhangige Zufallsvariablen

Definition 1

Zwei Zufallsvariablen X und Y sind unabhangig, geschrieben X 1 Y, falls fur alle
A, B C Rgilt
P(Xe€AYeB)=P(Xe€A)-PY €B).

Satz 2

Seien X und Y mit gemeinsamer pdf fx . Dann gilt X L Y genau dann, wenn

Ifxy(z,y) = fx(x) - fr(y)

fur alle z, y.

Beweis. (=) Angenommen X 1 Y. Dann gilt fir alle A, B:
P(Xe€eAYeB)=P(Xe€A)-P(Y €B).

Wéhle A = (—o0,z] und B = (—o0,y]. Differentiation nach x und y ergibt fxy(z,y) =
fx (@) - fy(y)-

(<) Sei fxy(z,y) = fx(z) - fy(y). Dann ist fUr beliebige Mengen A, B:

P(XGA,YEB)://fxﬁy(x,y)dydx
AJB

://hmn@@m
/fX dl‘/fy ) dy

=P(Xe€A) -PY €B). ]

Beispiel 2.7.1
Seien X und Y unabhangig mit X ~ Uniform(0,1) und Y ~ Exp(1). Dann ist

fxy(@y)=fx(@)- fr(y) =1-e¥=e"

firO <z <1lundy > 0.
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Satz 3

Sind die Wertebereiche von X und Y ein (méglicherweise unendliches) Rechteck
X x Y und lasst sich fxy in der Form

fxy(z,y) = g(x)h(y)

schreiben, wobei ¢ eine Funktion nur von x und h eine Funktion nur von y ist, dann
sind X und Y unabhangig.

Beweis. Aus der Faktorisierung fx y(z,y) = g(x)h(y) folgt fir die Randdichten:

fx(z) = /y g(2)h(y) dy = g(z) /y hy)dy = 9(z) - 1,
fr(y) = /X 9(x)h(y) dz = hy) /X g(¢)dx = h(y) - e,

wobei ¢y, c; Konstanten sind. Wegen [, [}, fxy(z,y)dyde = 1ist ¢; - ¢, = 1. Somit

x) h
) = gloohly) = 2 2oy = o) oty
Nach dem vorherigen Theorem sind X und Y unabhangig. n

2.8 Bedingte Verteilungen

Definition 1
Die bedingte pmf von Y gegeben X = z ist

_ Ixy(@y)
frix(y|z) = @)

falls fx(z) > 0.

Definition 2
Im stetigen Fall ist die bedingte pdf von Y gegeben X =z

_ fxy(z,y)
fY|X(?J | x) = —fx(x) )

falls fx(x) > 0.
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Beispiel 2.8.1

Gleichverteilung auf dem Einheitsquadrat: fxy(z,y) = 1 fur 0 < z,y < 1. Die Rand-
dichte ist fx(z) = [, 1dy = 1fir 0 < z < 1. Somit ist

oty | 0) = L2 2

firo0 <y < 1. AlsoistY | X = 2 ~ Uniform(0, 1).

Beispiel 2.8.2

Sei X ~ Uniform(0,1). Nach Beobachtung von X = z wéhlen wir Y ~ Uniform(0, z).
Die gemeinsame Dichte ist

1

fxy(z,y) = fx(@) fyix(y|z)=1- o= é

fir 0 < y < x < 1. Die Randdichte von Y ist

1
fy(v) :/ édm =[-Inz], = —Iny
y

fir0 <y < 1.

2.9 Multivariate Verteilungen und iid-Stichproben

Fdr n Zufallsvariablen X, ..., X, ist die gemeinsame pdf

fxixa (@1, ).

Definition 1

Falls X1,..., X, unabhangig sind und jede die gleiche Randverteilung f hat, nennen
wir sie unabhangig und identisch verteilt (engl. independent and identically distri-
buted, iid) und schreiben X, ..., X,, ~ f. Dann ist

Ixi o xa (@1, @) = Hf(xz)

2.10 Zwei wichtige multivariate Verteilungen

Multinomialverteilung

Verallgemeinerung der Binomialverteilung. Haben n Versuche mit &£ mdglichen Ausgéan-
gen und Wahrscheinlichkeiten py,...,p; (mit Zf;lpi = 1),s0ist X = (Xq,...,X}) ~
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Multinomial(n, p) mit

p !
n:
(Xy =21, Xy =a) = ———pi" -1
xl-"’l'k-

wobei SF | z; = n.

Multivariate Normalverteilung

Ein Zufallsvektor X = (X1,..., X;)T hat eine multivariate Normalverteilung X ~ N(p, Y),
falls die pdf

f(z) = W exp (—%(I — )N — ,u))

ist, wobei 1 € R* der Erwartungswertvektor und X die k£ x k Kovarianzmatrix (positiv definit)
ist.

Satz 1
Ist Z ~ N (0, I) (Standardnormalverteilung) und X = p + 227, soist X ~ N (1, %).

Beweis. Sei A = ©'/2. Die Transformation X = x4+ AZ hat die Umkehrung Z = A=Y(X — p)
mit Jacobi-Determinante |.J| = | det(A~1)| = |X|~/2. Die pdf von Z ist

20) = e (372

Mit der Transformationsformel folgt:

fx(@) = fz(A"(x — ) - ||

~ Gy (e~ WA ) ) <[]

1 1 _
= WGXP (—5(35 - H)TZ 1(37 - M)) )
da (A™H)TA™! = (AAT)~! = ©~!. Dies ist die Dichte von N(u, ). O

2.11 Transformationen von Zufallsvariablen

Sei Y = g(X) fUr eine Funktion g : R — R.

Diskreter Fall
Ist X diskret mit pmf fx, so hat Y die pmf
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Beispiel 2.11.1
Sei P(X=-1)=P(X=1)=1/4und P(X =0) = 1/2. Sei Y = X?. Dann ist

O =P(Y =0)=P(X=0)=1/2, fy(1)=P(Y =1)=P(X = —1)+P(X =1) =1/2.

Stetiger Fall

Ist ¢ streng monoton wachsend oder fallend, so hat Y die pdf

() = fx(g™'(v)) 'd%g‘l(y)‘ :

Beispiel 2.11.2

Sei X ~ Uniform(—1,3) mit fx(z) = 1/4 fir —1 < z < 3. Sei Y = X2. Der Wertebe-
reich von Y ist [0,9]. Flir 0 < y < 9 gibt es zwei Lésungen: z = £, /4.

* Fir 0 < y < 1: beide Werte liegen in (—1, 3), also

1 1 1 1 1 1 1
fY(y):fX(\/ﬂ)'ﬁJer(—\/@'m:Z2ﬁ+1'2ﬂ=4\/§-
« Fir1 <y <9:nur,/ye(-1,3), also
1 1 1
fY(?J):;l m:%

2.12 Transformationen mehrerer Zufallsvariabler

Seien X, X, mit gemeinsamer pdf fy, x, und Y7 = ¢1(X;, Xs), Yo = g2(X;, X»). Falls die
Transformation bijektiv ist mit Umkehrung X; = hy (Y1, Y2), Xo = he(Y), Y2), so ist die pdf von
(Y1,Y3)

le,Yz (yh y2) = fX17X2 (hl (yla y2)7 hQ(yh y2))|‘]|’

wobei J die Determinante der Jacobi-Matrix ist:

dy1 Oy

ohy  on
J = det (gﬂé g%i) :
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Beispiel 2.12.1

Seien X, X, ~ Uniform(0, 1) unabhéngig. Sei Y7 = X; + X, und Y, = X; — X,. Die
Umkehrung ist X; = (Y1 + Y3)/2, Xy = (Y1 — Y3)/2. Die Jacobi-Determinante ist

1/2 1/2
J = det <1/2 _1/2> =-1/2,

also |J| = 1/2. Die gemeinsame pdf ist

1
friva(yr,ye) =1-1- 5

N[ —

im Bildbereich, d.h. fir 0 < (y1 +v2)/2 < 1und 0 < (y1 — y2)/2 < 1, also |ya| < 11 <
2 — |yal-

2.13 Anhang

Technisch gesehen muss eine Zufallsvariable messbar sein, d. h. fir jede Borel-Menge B C
R muss X !(B) = {w : X(w) € B} ein Ereignis sein (d. h. in der o-Algebra liegen). Dies ist
in der Praxis meist erfUllt.
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Kapitel 3

Erwartungswert

3.1 Erwartungswert einer Zufallsvariable

Der Erwartungswert (oder Mittelwert) einer Zufallsvariable X ist ihr durchschnittlicher Wert.

Definition 1

Der Erwartungswert oder Mittelwert von X ist

_ > af(x)  falls X diskret,
EX)= /xdF(:c) _ {f zf(z)dx falls X stetig,

falls die Summe (bzw. das Integral) wohldefiniert ist. Notation:

E(X):EX:/xdF(a:):u:uX.

Der Erwartungswert ist eine Ein-Zahlen-Zusammenfassung der Verteilung. Man kann
E(X) als Durchschnitt 1 >=" | X; einer groBen Anzahl iid Ziehungen X, ..., X,, verstehen.
Dies ist mehr als eine Heuristik — es ist ein Satz, das Gesetz der groBen Zahlen (Kapitel 5).

Damit E(X) wohldefiniert ist, fordern wir [ || dFx(z) < oo. Andernfalls existiert der Er-
wartungswert nicht.

Beispiel 3.1.1

Sei X ~ Bernoulli(p). Dannist E(X) = 32! af(z) =0-(1—p)+1-p=p.

Beispiel 3.1.2
Fairer Minzwurf zweimal, X = Anzahl Képfe. Dann ist

1 1 1
E(X):fox(x)zo-zﬂim-z:1.

x

43
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Beispiel 3.1.3
Sei X ~ Uniform(—1, 3). Dann ist

=] =
| — |
m|&m
| IS
| w
N

I

—_

E(X):/xfx(x)dx:i/jxdx:

Beispiel 3.1.4
[Cauchy-Verteilung] Eine Zufallsvariable hat Cauchy-Verteilung mit Dichte fy(z) =

;- Dann ist
2 oo
/|x|dF(a:):—/ dea::oo,
TJo 1+«

1
(142

also existiert der Erwartungswert nicht. Simuliert man viele Cauchy-Ziehungen, stabi-
lisiert sich der Durchschnitt nie, da die Cauchy-Verteilung dicke Tails hat.

Von nun an setzen wir implizit voraus, dass Erwartungswerte existieren.

Satz 2
[Regel des faulen Statistikers] Sei Y = r(X). Dann ist

S, (@) fx(z) falls X diskret,

E(Y) = E(r(X)) = / r(z)dFx(x) = { [r(z)fx(z)de falls X stetig.

Man muss also nicht erst die Verteilung von Y bestimmen.

Beispiel 3.1.5

Sei X ~ Unif(0,1) und Y = ¢*. Dann ist

Beispiel 3.1.6

Stab der Lange 1, zufallig gebrochen bei X ~ Unif(0, 1). Sei Y die La&nge des ldngeren
Stiicks. Dann ist Y = max(X,1 — X) und

1/2 1 3
IE(Y):/O (1—a7)d:v+/1 :de:Z.

/2
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Satz 3

Existiert das k-te Moment und ist j < k, so existiert auch das j-te Moment.

3.2 Eigenschaften des Erwartungswerts

Satz 1

Seien X, ..., X, Zufallsvariablen und aq, ..., a, Konstanten. Dann ist

i=1 g=ll

Der Erwartungswert ist also linear.

Beispiel 3.2.1

[Binomialverteilung] Sei X ~ Binomial(n, p). Schreibe X = Y"" | X;, wobei X; ~
Bernoulli(p). Dann ist

E(X)=E <Zn: X¢> - ZE(XZ-) = Zp = np.

Satz 2
Seien X, ..., X,, unabhangig. Dann ist

p=il

3.3 Varianz und Kovarianz

Definition 1

Sei X eine Zufallsvariable mit Mittelwert ... Die Varianz ist
Var(X) = E [(X — p)*].

Die Standardabweichung ist o = |/Var(X). Notation: Var(X) = 0% = 0%.
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Satz 2

Die Varianz hat folgende Eigenschaften (falls wohldefiniert):
1. Var(X) = E(X?) — [E(X))?,
2. Falls a,b Konstanten sind, gilt Var(aX + b) = a* Var(X),

3. Var(X) > 0.

Beispiel 3.3.1
Sei X ~ Binomial(n,p) mit X = Y"" | X;, wobei X; = 1 fur Erfolg beim i-ten Versuch.
Da die X; unabhangig sind, ist
Var(X) = ZVar(XZ-)‘
=1

Fir X; ~ Bernoulli(p) ist Var(X;) = E(X?) — [E(X;)]* =p — p* = p(1 — p). Also

Var(X) = np(1 — p).

Satz 3

Seien X, ..., X, iid mit x = E(X;) und ¢* = Var(X;). Sei X,, = 23" | X, der Stich-
probenmittelwert. Dann ist

0.2

E(X,)=u, Var(X,)= -

Definition 4

Seien X und Y Zufallsvariablen mit Erwartungswerten ux und uy. Die Kovarianz ist

Cov(X,Y) =E[(X — px)(Y — py)] = E(XY) — pxpy.
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Satz 5

Die Kovarianz erfillt:

1. Cov(X, X) = Var(X),
2. Falls X und Y unabhéngig sind, ist Cov(X,Y) =0,
3. Cov(X,Y) = Cov(Y, X),

4. Cov(aX,Y) =aCov(X,Y),
5. Cov(X,a) = 0 fur eine Konstante a,
6 (

. Cov(X +Y,Z) =Cov(X,Z)+ Cov(Y, Z).

Satz 6
Es qilt
Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y)
und
Var(X —Y) = Var(X) + Var(Y) — 2Cov(X,Y).
Definition 7
Die Korrelation zwischen X und Y ist
Cov(X,Y
p(X,Y) = X.7)
V/Var(X) Var(Y)

Esgilt —1 < p(X,Y) < 1.

3.4 Erwartungswert und Varianz wichtiger Verteilungen

Verteilung E(X) Var(X)
Punktmasse an a a 0
Bernoulli(p) D p(1—p)
Binomial(n, p) np np(1 —p)
Geometrisch(p) 1/p (1—0p)/p?
Poisson(\) A

Uniform(a, ) (a+0)/2 (b—a)?/12
Normal(u, ?) I o?
Exp(5) B B2
Gamma(q, 5) af a/3?
Beta(a, 0) af(a+p) af/l(a+B)*(a+ B +1)]
t, 0(v>1) v/(v—2)(v>2)

X, p 2p

47
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Lemma 1

Sei a ein Vektor und X ein Zufallsvektor mit Erwartungswert ;. und Kovarianzmatrix
Y. Dann ist
E(a’X) =a"p, Var(a'X) = a’Xa.

3.5 Bedingter Erwartungswert

Definition 1
Der bedingte Erwartungswert von X gegeben Y = y ist

BX |Y =y) = [ afav(e] v)d

Definiere g(y) = E(X | Y = y). Dannist E(X | Y) die Zufallsvariable g(Y').

Beispiel 3.5.1
Ziehe X ~ Unif(0,1). Nach Beobachtung von X = z ziehe Y ~ Unif(0, z). Dann ist
E(Y|X:x):g, E(Y|X):§.

Satz 2
[Regel der iterierten Erwartungswerte] Flr Zufallsvariablen X und Y qilt

EE(Y | X)) = E(Y).

Beispiel 3.5.2
Im vorigen Beispiel ist
X 1 1 1 1

Man kann auch direkt rechnen: E(Y) = fol y(—Iny)dy = 1/4.
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Definition 3
Die bedingte Varianz ist

Var(Y | X =x) = /(y — () frix (v | ) dy,

wobei u(z) =E(Y | X = ).

Satz 4
Far Zufallsvariablen X und Y gilt

Var(Y) = E(Var(Y | X)) + Var(E(Y | X)).

Beispiel 3.5.3

Ziehe zufallig eine Grafschaft in den USA. Ziehe dann zuféllig eine Person aus dieser
Grafschaft. Sei Y das Einkommen. Wir haben

Var(Y)=  E(Var(Y | X)) + Var(E(Y | X))

Varianz innerhalb Grafschaften  Varianz zwischen Grafschaften

3.6 Momenterzeugende Funktionen

Definition 1
Die momenterzeugende Funktion (engl. moment generating function, mgf) ist

Vx(t) = E(e'™) = /et’” dFx(x).

Beispiel 3.6.1
Sei X ~ Exp(1). Furt < 1 ist

(0.0} (0.9} 1
Yx(t) = / e dr = / et Vedy = —
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Lemma 2

Eigenschaften der mgf:
1. Das k-te Moment ist E(X*) = 4{¥(0), wobei v die k-te Ableitung ist.
2. Sind X und Y unabhangig, so ist ¥ x.y (t) = ¥x(t)Yy (1).

3. Yuxs(t) = e™Px(at).

Beispiel 3.6.2
Sei X ~ Binomial(n,p) mit X = 3" | X, wobei X; ~ Bernoulli(p). Dann ist ¢x,(t) =
(1 —p)+ pe und

n

Yx(t) = [ ¥x.(t) = [(1 — p) + pe'T".

1=1

Satz 3

Seien X und Y Zufallsvariablen. Falls ¢ x(t) = vy (t) fur alle ¢ in einer Umgebung von
0, dann ist Fx(z) = Fy(z) fur alle z, d.h. X und Y haben die gleiche Verteilung.
3.

Beispiel 3.6.3

Seien X; ~ Binomial(n,p) und X, ~ Binomial(ns, p) unabhangig. Sei Y = X; + Xs.
Dann ist

by (t) = ¥x, (OYx, (1) = [(1 = p) + pe']" [(1 = p) + pe'™ = [(1 — p) + pe']™ ™.

Also ist Y ~ Binomial(n; + ns, p).

Beispiel 3.6.4

Seien Y; ~ Poisson()\;) und Y; ~ Poisson()\;) unabhangig. Dann ist vy, (t) = e*(¢'

und

wY1+Y2 (t) — eAl(etfl)e)\Q(et—l) _ e()\1+)\2)(6t71).

Also ist Y1 + Y3 ~ Poisson(A; + Ag).

7 Anhang

Wichtige Momente

Fir X ~ N(u,o?) gilt:
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* BE(X) =,
* Var(X) = o2,
» B(X?) = p* + 3po?,

« BE(X*) = p* + 6p20” + 30

Ungleichungen
Markov-Ungleichung: Fir X > 0und ¢ > 0 gilt

pxz < B

Tschebyschow-Ungleichung: Fiir beliebige X mit Erwartungswert i und Varianz o2 gilt

firt >0

0.2

P(X —plzt) < -
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Kapitel 4

Ungleichungen

4.1 Wahrscheinlichkeitsungleichungen

Stellen Sie sich vor, Sie haben eine Minze, bei der Sie nicht sicher sind, ob sie fair ist. Sie
werfen sie 100-mal und erhalten 65-mal Kopf. Ist die Miinze manipuliert? Oder hatten Sie
nur Pech? Oder — mathematisch praziser gefragt: Wie wahrscheinlich ist es, bei einer fairen
Munze so weit vom Erwartungswert abzuweichen?

Genau hier kommen Wahrscheinlichkeitsungleichungen ins Spiel. Sie sind das Schwei-
zer Taschenmesser der Statistik: Mit minimalem Wissen Uber eine Verteilung — manchmal
nur ihrem Erwartungswert oder ihrer Varianz — kénnen wir méachtige Aussagen Uber die
Wahrscheinlichkeit seltener Ereignisse treffen.

Das Schéne ist: Diese Ungleichungen gelten unabhéngig von der konkreten Verteilung.
Ob normal, binomial, exponentiell oder etwas ganz Exotisches — die Gesetze gelten univer-
sal. Das macht sie besonders wertvoll in der Praxis, wo wir die wahre Verteilung oft nicht
kennen.

Aber Ungleichungen sind mehr als nur ein praktisches Werkzeug. Sie sind das theore-
tische Fundament der gesamten Konvergenztheorie (Kapitel 5), sie garantieren die Zuver-
lassigkeit statistischer Verfahren und sie erklaren, warum maschinelles Lernen Gberhaupt
funktioniert. Wenn Sie verstehen wollen, wie aus Daten Wissen wird, fihrt kein Weg an
diesen Ungleichungen vorbei.

Lassen Sie uns mit der einfachsten beginnen — und einer der méchtigsten.

Satz 1

[Markov-Ungleichung] Sei X eine nichtnegative Zufallsvariable mit existierendem Er-
wartungswert E(X). Fir jedes t > 0 gilt

Pz 0 < B

53
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Beweis. Da X > 0, kobnnen wir den Erwartungswert aufspalten:

E(X) :/Oooxf(@ dx
_/Otg;f(x)dwr/oofcf(w)dﬂf

4

> /Ooxf(x)dxzt/oof(m)dx:tP(XZt).

Division durch ¢t > 0 liefert die Behauptung. I

Interpretation: Die Markov-Ungleichung sagt uns: Wenn der Erwartungswert klein ist,
kann X nicht zu oft groBe Werte annehmen. Ist etwa E(X) = 5 und ¢t = 50, so ist P(X >
50) < 5/50 = 0,1. Die Masse der Verteilung kann nicht beliebig weit vom Erwartungswert
wegwandern.

Satz 2
[Tschebyschow-Ungleichung] Sei i = E(X) und ¢? = Var(X). Dann gilt

0.2

P(|X_H|Zt)§t—

und mit Z = (X — u)/o (standardisierte Variable)
1
P(1Z] 2 k) < -
Insbesondere ist P(|Z] > 2) <1/4und P(|Z| > 3) < 1/9.

Beweis. Wende Markov auf die nichtnegative Zufallsvariable | X — u|* an:

E(X —u) o
P(X —pl 2 t) = P(X —pP 2 ) < =22 H = T

Setze t = ko fUr die zweite Aussage. n

Interpretation: Tschebyschow ist starker als Markov, weil wir zuséatzliche Information
(die Varianz) nutzen. Die Ungleichung garantiert, dass bei jeder Verteilung mindestens 75%
der Masse innerhalb von 20 um den Mittelwert liegt. Bei 30 sind es mindestens ~ 89%.
Das ist die mathematische Basis fur die ,68-95-99,7-Regel"bei Normalverteilungen — nur
allgemeiner!
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Beispiel 4.1.1

[Fehlerrate eines Pradiktors] Stellen Sie sich vor, Sie testen ein neuronales Netz auf
n neuen Testféllen. Sei X; = 1 falls die i-te Vorhersage falsch ist, sonst X; = 0. Die
beobachtete Fehlerrate ist dann

— 1<

Jedes X; ist Bernoulli-verteilt mit unbekanntem Parameter p (der wahren Fehlerrate).
Die Frage ist: Wie weit kann X',, von p abweichen?
Da Var(X;) = p(1 — p) < 1/4 und die X; unabhangig sind, ist

— . Var(X 1— 1
Var(X,) = ar?(l 1):p(np)§R.

Mit Tschebyschow erhalten wir

— 1
P X, —p|>¢€) < )
(X =pl> ) <

Konkretes Beispiel: Bei n = 1000 Testfallen und ¢ = 0,05 (5 % Abweichung):

P Xn_ ) S ~ 10 :071
(X =2l > 0.05) < T =506 0.0025 ~ 10

Mit mindestens 90% Wahrscheinlichkeit liegt unsere gemessene Fehlerrate innerhalb
von +5% der wahren Fehlerrate. Nicht schlecht flr eine verteilungsfreie Garantie!

Satz 3

[Hoeffding-Ungleichung] Seien Y1, ... Y, unabhéangig mit E(Y;) = 0und a; < Y; < b;.
Sei € > 0. Dann gilt

d <ZY - ) <o (- 2?1(215— )

Beweis. Der Beweis nutzt zwei Ideen: die Chernoff-Methode und das Hoeffding-Lemma.
Schritt 1 (Hoeffding-Lemma): Fir E(Y) =0 und a <Y < b gilt

E(e™) < exp (@

Beweis des Lemmas: Da Y beschrankt ist, kbnnen wir Y als Konvexkombination der Rand-
punkte schreiben. Fir y € [a, b] ist

) far alle t € R.

Wegen Konvexitat von e gilt
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MitE(Y)=0folgt E(Y) = Xa+ (1 —X\)b=0fur A\ =5b/(b—a), also

E(etY)< b ela 1 —a ot

“b—a b—a

 w[b=b-1+a-elm

N b—a

_ o/ —0F 0T
b—a '

Setze h =t(b—a)und p = —a/(b—a) € |0, 1]. Definiere
L(h) := —ph +log(1 — p + pe").

Esist L(0) = L'(0) =0und L"(h) = plplet 1 (da p(1 — p) < 1/4). Mit Taylor folgt

~ (1—p+peh)?
h2 2 2
L(h) < 5 —  E(efY) < ma78,

Schritt 2 (Chernoff-Methode): Fir ¢ > 0 gilt mit Markov:

P (Z}Q > e> = P (XY > )
=1

< E(ef2Y)

ete

=e“J]E(") (Unabhangigkeit)
i=1

n 2(h. A4 \2
< [ exp (%) (Hoeffding-Lemma)
=1

= exp <t2zw—te).

=1

Schritt 3 (Optimierung): Minimiere die rechte Seite Uber ¢ > 0. Ableitung nach t:

% [g S (b —a)? - te] — EZ(@ —a)?—e=0.

Optimal ist t* = 4¢/ > (b; — a;)?. Einsetzen liefert

ox 16¢2 (b — a;)® 4e?
P (8 S —a)? 16 (b - >)

- <z<zf€—2 a)? zwik—g >) - (‘z<b2——>> | .

Bemerkung: Hoeffding ist eine der machtigsten Konzentrationsungleichungen Gberhaupt.
Sie sagt: Summen von beschréankten Zufallsvariablen konzentrieren sich exponentiell schnell
um ihren Erwartungswert. Die Wahrscheinlichkeit groBer Abweichungen fallt exponentiell
mit €2 — viel schneller als die polynomiellen Schranken von Markov oder Tschebyschow!
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Alternativbeweis (kompakte Version)

Der obige Beweis ist vollstandig und zeigt alle Details des Hoeffding-Lemmas. Hier eine
kompakte Alternative, die die Kernidee auf das Wesentliche reduziert:
Beweis (Chernoff-Methode): Fiir jedes ¢ > 0 gilt

() (=5 )

< E (exp (t2. V) (Markov)

- ete

_ [[, E(e™)

ete

(Unabhéangigkeit).

Das Hoeffding-Lemma (siehe Beweis oben) besagt: Fur E(Y) =0und a <Y < b gilt

E(e) < exp (M) :

8 '

Minimierung Uber ¢ (optimal: t* = 4¢/ > (b; — a;)?) ergibt

() son (i)

Kernidee: Durch Exponenzieren wird die Summe zum Produkt (Unabhangigkeit!), dann
Hoeffding-Lemma, dann Optimierung Uber den freien Parameter ¢.

Seien X, ..., X,, ~ Bernoulli(p) unabhangig. Dann gilt flir jedes ¢ > 0

P(| X, —p| > €) < 2e72¢

Beweis. Setze Y; = X; — p. Dannist E(Y;) = 0,undwegen 0 < X; < 1gilt —p <Y; <1 —p,
also b; — a; = 1. Mit Hoeffding folgt

P(Yn—p>e):P<ZYi >ne>
i=1
2
S exp (_2(’”6) ) — 6—2n52‘

n-12

Symmetrisch fir P(X,, — p < —e). Die Unionsschranke P(AU B) < P(A) + P(B) liefert die
Behauptung. O
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Beispiel 4.1.2

[Tschebyschow vs. Hoeffding] Betrachte X, ..., X, ~ Bernoulli(p) mit n = 100 und
e =0,2.
Tschebyschow:

_ 1— 0,25
P(IX,—p|>02) < pl—p) 0

= 0,0625.
=~ 100-0,04 — 4 0,0625

Hoeffding:
P(|X, —p| > 0,2) < 272100004 — 9678 ~ (,00067.

Hoeffding ist hier fast 100-mal scharfer! Flr groBe Abweichungen ist die exponenti-
elle Schranke unschlagbar.

Bemerkung 4.1.1 (Quantitativer Vergleich). Die folgende Tabelle zeigt die Schranken fur
P(|X,, — p| > €) bei X; ~ Bernoulli(0,5), n = 100:

e  Tschebyschow Hoeffding Exakt (Binomial)

0,05 0,100 0,606 0,729

0,10 0,025 0,135 0,157

0,20 0,006 0,001 0,0003

0,30 0,003 1078 1071
Beobachtungen:

» Fir kleine ¢ (0,05-0,10): Beide Schranken sind konservativ, aber Hoeffding ist naher
am wahren Wert.

» FOr groBe ¢ (0,20-0,30): Hoeffding ist dramatisch schérfer — der exponentielle Abfall
macht den Unterschied!

+ Die Hoeffding-Schranke ist universell: Sie gilt fUr alle beschrénkten Verteilungen, nicht
nur Bernoulli.

Satz 5
[Mill-Ungleichung] Sei Z ~ N(0,1). Dann gilt

2 €_t2/2 2
P(|Z] >t) <4/= — und P(|Z| >t) < 2e7¥/?
s
far ¢ > 0.
Beweis. Wegen Symmetrie ist P(|Z| > t) = 2P(Z > t). Die Dichte von Z ist p(z) =

1 6—332/2
V2T ’
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Erste Schranke: Fir ¢t > 0 gilt mit partieller Integration

& & 1 x 2
P(Z >1t) = ey = / — . ZeT "2y
( ) . e

27’(’ t E
1 1 o _ 2/2
< — = xe " /%dr (da 1/z fallend)
27T t t
_ L ' 1 [_€7x2/2:|00 _ Le‘tQ/Z.
Vor t t 2 t

o—t2/2

Also P(|Z| > t) = 2P(Z > t) < \/g :
Zweite Schranke: Mit Markov flr ¢! und s > 0:
]E(esZ)

P(Z> 1) = Pe? > ) < =5

Fir Z ~ N(0,1) ist E(e??) = €%/ (MGF der Normalverteilung). Somit
P(Z > 1) < /775t = ¢=5t+5°/2,
Minimierung Uber s (optimal: s = ¢) liefert P(Z > t) < e /2, also P(|Z| > t) < 2e7"/2. [

Bemerkung 4.1.2. Fur groB3e ¢ ist Mill deutlich besser als Tschebyschow:

t Tschebyschow Mill

2 <0,25 <0,27
3 <0,11 < 0,02
4 < 0,0625 < 0,0027

Far ¢t > 3 ist Mill um GréBenordnungen scharfer. Das liegt daran, dass Mill die spezielle
Struktur der Normalverteilung ausnutzt, wahrend Tschebyschow nur Erwartungswert und
Varianz kennt.

4.2 Ungleichungen fir Erwartungswerte

Wéhrend die vorherigen Ungleichungen Wahrscheinlichkeiten abschatzen, beschaftigen wir
uns jetzt mit Ungleichungen zwischen Erwartungswerten. Diese sind fundamental fir viele
Beweise in der Wahrscheinlichkeitstheorie und ermdglichen elegante Argumente.

Satz 1

[Cauchy-Schwarz-Ungleichung] Haben X und Y endliche zweite Momente, so gilt

E(XY]) < VE(X?)E(Y?)

und

| Cov(X,Y)| < v/Var(X) Var(Y).

Gleichheit gilt genau dann, wenn X und Y linear abh&ngig sind.
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Beweis. Firt € R ist

0 <E[(X —tY)?
=E(X?) - 2E(XY) +t*E(Y?).

Dies ist eine quadratische Funktion in ¢ mit Minimum bei ¢t* = E(XY)/E(Y?). Einsetzen
liefert
[E(XY)P?
E(Y?) ’
woraus [E(XY)]? < E(X?)E(Y?) folgt. Ersetze X durch |X| und Y durch |Y| fir die erste
Aussage.
Fir die zweite Aussage wende die erste auf X — E(X) und Y —E(Y) an. N

0 <E(X?) —

Interpretation: Cauchy-Schwarz sagt, dass der Erwartungswert eines Produkts nie gré-
Ber sein kann als das geometrische Mittel der zweiten Momente. Die Kovarianz-Version
zeigt: [p(X,Y)| = | Cov(X,Y)|/+/Var(X) Var(Y) < 1, was wir bereits wussten, aber hier als
Spezialfall erhalten.

Satz 2

[Jensen-Ungleichung] Ist g konvex, so gilt

Ist ¢ konkav, so gilt

Beweis. Wir beweisen die Aussage flr konvexes g. Sei u = E(X).
Schritt 1: Existenz der Stlitzgeraden. Da ¢ konvex ist, existiert zu jedem Punkt x ein
Subgradient a € R, sodass die affin-lineare Funktion
h(z) = a(x — p) + 9(p)
eine Stitzgerade an g im Punkt 1 ist. Dies bedeutet per Definition der Konvexitat:
g(x) > h(zx) =a(x — pu) + g(pn) foralle z € R.

Begriundung: Fir konvexe Funktionen gilt die Ungleichung

9(y) > g(x) + aly — x)

far einen geeigneten Subgradienten « (der bei differenzierbaren Funktionen gleich ¢'(z) ist).
Setzen wir x = p und y beliebig, folgt die Stltzgeraden-Eigenschaft.

Schritt 2: Anwendung der Linearitat des Erwartungswerts. Da h(z) = a(z — p) +
g(pn) = ax — ap + g(p) affin-linear ist, gilt

E(h(X)) = E(aX — ap+ g(n))
=aE(X) —ap+ g(p)
= ap —ap+ g(p)
= g(n) = g(E(X)).
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Schritt 3: Anwendung der Stutzgeraden-Eigenschaft. Aus ¢g(z) > h(x) fr alle x folgt
durch Anwendung des Erwartungswerts (unter Nutzung der Monotonie: aus Y > Z folgt
E(Y) > E(2)):

E(g(X)) = E(h(X)) = g(E(X)).

Konkaver Fall: Ist g konkav, so ist —g konvex. Aus dem konvexen Fall folgt
E(-g(X)) = —g(E(X)) <= E(g(X)) < g(E(X)).
Dies zeigt die Jensen-Ungleichung fir konkave Funktionen. O

Geometrische Intuition: Konvexe Funktionen ,biegen nach oben". Wenn wir X durch
seinen Mittelwert ersetzen und dann g anwenden, erhalten wir einen kleineren Wert als
wenn wir erst ¢ anwenden und dann mitteln. Die Funktion ,verstarkt"die Variabilitat von X.

Beispiel 4.2.1
[Anwendungen der Jensen-Ungleichung] (1) Da g(z) = #? konvex ist, folgt
E(X?) > [E(X)]? <= Var(X)=E(X?) —[E(X)]*>0.

Die Varianz ist also automatisch nichtnegativ — keine separate Rechnung nétig!
(2) Da g(z) = log = konkav ist (fir = > 0), folgt

E(log X) < log E(X).

Aquivalent: Das geometrische Mittel ist héchstens so groB wie das arithmetische Mit-
tel:
exp[E(log X)] < E(X).

Bemerkung 4.2.1 (Weitere wichtige Ungleichungen). Fir Vollstandigkeit erwahnen wir zwei
weitere Klassiker:
Minkowski-Ungleichung: Fur p > 1 gilt

[E(IX + Y)Y < [B(XP)]Y7 + QY)Y

Dies ist die LP-Dreiecksungleichung: Der LP-Abstand zwischen X und —Y ist h6chstens die
Summe der Abstande.
Hélder-Ungleichung: Fir p,g > 1 mit1/p+ 1/¢ = 1 qilt

E(IXY]) < [E(X ) VPEY 9]

Fir p = ¢ = 2 erhalten wir gerade Cauchy-Schwarz. Holder ist die allgemeine Version fir
konjugierte Exponenten.
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Kapitel 5

Konvergenz von Zufallsvariablen

5.1 Einfuhrung und Motivation

Der wichtigste Aspekt der Wahrscheinlichkeitstheorie betrifft das Verhalten von Folgen von
Zufallsvariablen. Dieser Teil wird GroBe-Stichproben-Theorie, Grenzwerttheorie oder asym-
ptotische Theorie genannt.

Motivation: In der Praxis haben wir oft eine Folge X, X, X3, ... von Zufallsvariablen.
Beispiele:

» X, = Ergebnis des i-ten Manzwurfs
» X, = Messung einer physikalischen Gré3e zum Zeitpunkt i
* X; = Rendite einer Aktie am Tag i

Die zentrale Frage lautet: Was kénnen wir (ber das Grenzverhalten flir n — oo aussa-
gen?

In der Analysis konvergiert eine Zahlenfolge x,, gegen z, falls fir jedes ¢ > 0 gilt: |z, —
x| < e fur alle hinreichend groBen n. In der Wahrscheinlichkeitstheorie sind Zufallsvariablen
Funktionen X : 2 — R, und es gibt verschiedene sinnvolle Konzepte von Konvergenz.

Zwei fundamentale Resultate:

1. Das Gesetz der groBen Zahlen: Der Stichprobenmittelwert X,, = - > | X, konver-
giert gegen p = E(X;).

2. Der zentrale Grenzwertsatz: Die normierte Summe %fﬁ_“) konvergiert in Vertei-

lung gegen N(0,1).

Diese Satze bilden das theoretische Fundament der gesamten Statistik.

5.2 Konvergenzarten

Wir beginnen mit prazisen Definitionen der verschiedenen Konvergenzarten.

63
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Definition 1
[Konvergenz in Wahrscheinlichkeit] Sei (X, ). €ine Folge von Zufallsvariablen und X
eine Zufallsvariable, alle definiert auf demselben Wahrscheinlichkeitsraum (€2, F, P).

Wir sagen, X,, konvergiert in Wahrscheinlichkeit gegen X, geschrieben X, 5 X,
falls fUr jedes ¢ > 0 gilt:
lim P(]X, — X|>¢)=0.

n—oo

Ist X konstant gleich ¢, schreiben wir X, e

Intuition: Die Wahrscheinlichkeit, dass X,, weit von X entfernt ist, wird beliebig klein. Mit
hoher Wahrscheinlichkeit liegt X,, nahe bei X flr grof3es n.

Definition 2

[Konvergenz in Verteilung] Sei (X, ).y €ine Folge von Zufallsvariablen mit Vertei-
lungsfunktionen F,, und X eine Zufallsvariable mit Verteilungsfunktion F.

Wir sagen, X,, konvergiert in Verteilung gegen X, geschrieben X, 4 X, falls

lim F,(t) = F(t)

n—oo

an allen Stetigkeitsstellen ¢ von F.

Bemerkung: Die X,, und X muissen nicht auf demselben Wahrscheinlichkeitsraum defi-
niert sein — nur ihre Verteilungen zahlen. Dies ist die schwéchste Form von Konvergenz.

Definition 3
[Konvergenz in LP] FUr p > 1 sagen wir, X,, konvergiert in L? gegen X, falls

lim E[|X, — X|"] = 0.

n—oo

Flr p = 2 spricht man von Konvergenz in quadratischem Mittel.

Definition 4

[Fast-sichere Konvergenz] Wir sagen, X, konvergiert fast sicher gegen X, ge-
schrieben X,, 2% X, falls
P(lim Xn:X> _ 1,

n—0o0

d.h.
P ({w €0 lim X,(w) = X(w)}) ~1.

Intuition: Mit Wahrscheinlichkeit 1 konvergiert die Folge punktweise gegen X.
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Beispiel 5.2.1

[Normalverteilung mit schrumpfender Varianz] Sei X,, ~ N(0,1/n). Intuitiv konzen-
triert sich X, bei 0.

(a) L?-Konvergenz:

1
E(X2) = Var(X,,) = — — 0.

n

Also X,, — 0in L2.
(b) Konvergenz in Wahrscheinlichkeit: Fiir e > 0 und Z ~ N(0,1):

P> 9 = P (|| > €] = Pa21 > evi) -
AIsznio.

(c) Konvergenz in Verteilung:

F.(t) = P(X, <t) = ®(ty/n),

wobei ® die cdf von N(0, 1) ist. Fir ¢ < 0ist ®(ty/n) — 0, und fir ¢ > 0ist ®(t\/n) — 1.
Bei ¢ = 0 haben wir ®(0) = 1/2 fur alle n, aber 0 ist eine Unstetigkeitsstelle der
Grenzverteilung (Punktmasse bei 0). An allen anderen Punkten gilt:

0 t<0,
1 ¢t>0.

Fa(t) = F(t) = {

Also X, 0.

Beispiel 5.2.2

[Gegenbeispiel: Konvergenz in Verteilung impliziert nicht Konvergenz in Wahrschein-
lichkeit] Sei X ~ N(0,1) und definiere X,, = —X fur alle n. Dann hat jedes X, dieselbe

Verteilung wie X, also X, % X (sogar F, = F fur alle n).
Aber X,, — X = —2X hat Verteilung N(0,4), also

P(|X,— X|>¢)=P(]2X| >¢) >0
far alle n und € < co. Somit X, 7P® X.

Fazit: Konvergenz in Verteilung ist echt schwacher als Konvergenz in Wahrscheinlich-
keit.

Hierarchie der Konvergenzarten

Der folgende Satz ordnet die verschiedenen Konvergenzarten.
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Satz 5

[Hierarchie der Konvergenzarten] Fir Zufallsvariablen X,,, X gelten folgende Implika-
tionen:

1. X, > Xinl?= X, 5 X.

2. X, 2 X = X, & X,

3. X, H X=X, 5 X,

4. Falls X, 4. ¢ fir eine Konstante ¢, dann X, Lo

Die Umkehrungen gelten im Allgemeinen nicht.

Beweis. (1) L? = P: Sei ¢ > 0. Mit der Markov-Ungleichung:
E[(X, — X)?]

P(|X, - X|>¢)=P((X,— X)*>¢) < 5

— 0.
€

(2) a.s. = P: Sei e > 0 und definiere
A, (e) ={w: | Xpn(w) — X(w)| < eflralle m > n}.

Dann ist (A, (€)) eine aufsteigende Folge und

m—ro0

U An(e) = {w: lim X,,(w) = X(w)}.

Da X,, 2% X, ist P(2, A,(e)) = 1. Mit Stetigkeit von unten:
P(I Xy — X| < ) > P(Ay(€)) — 1.

Also P(|X,, — X| > €) — 0.
(8) P = d: Sei t eine Stetigkeitsstelle von F und ¢ > 0. Dann:

F.(t) = P(X, <t)
=PX,<t,X<t+4+e)+P(X,<t,X >t+e¢)
SPX <t4e)+P(|X, - X[ >¢)
=F(t+e¢€)+ P(|X, — X| > e).

Grenzlibergang n — oo: limsup,, ., F.(t) < F(t + €).
Analog: P(X <t—¢) < P(X, <t)+ P(|X, — X| > ¢), also

F(t —¢) <liminf F,(t) + 0.
n—oo

Somit F(t — €) < liminf F,,(t) < limsup F,(t) < F(t + ¢).
Da e beliebig und F stetig bei t, folgt F,,(t) — F(t).
(4) d(c) = P: Sei F(t) = ¥u>q (Punktmasse bei c). Flr e > 0:

P(|X, —c|>¢€)=F,(c—¢€)+ (1 = F,(c+e¢)).
Die Punkte ¢ + € (fir e > 0) sind Stetigkeitsstellen von F', daher:
Folc—¢) > F(c—€)=0, Fy(c+e)— F(c+e)=1.
Also P(|X,, —c| > €) — 0. O
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5.3 Das Slutsky-Theorem

Das Slutsky-Theorem ist fundamental fir Anwendungen, da es erlaubt, Konvergenz unter
stetigen Transformationen zu erhalten.

Satz 1
[Slutsky] Seien X,,, X,Y,, Zufallsvariablen und ¢ : R — R eine stetige Funktion. Dann
gilt:

1. Falls X,, & X, dann 9(Xy) L g9(X).

2. Falls X, % X und Y, & ¢ (Konstante), dann:

.Xn+Yni>X—|—C,
0 Xn-Yni>c-X,
. X, /Y, % X/ (falls ¢ # 0).

Beweis. (1) Sei e > 0. Da g stetig auf R ist, existiert fir jedes kompakte K C R ein § > 0 mit:
Falls z,y € K und |x — y| < §, dann |g(x) — g(y)| < e.
Waéhle K = [-M, M] groB3 genug, sodass P(|X| < M) > 1 —¢/2. Dann:
P(lg(Xn) = 9(X)| > €) < P(lg(Xn) — g(X)| > €, |X]| < M, |X;| < M)
+ P(|X| > M)+ P(|X,| > M)
<P(|X,—-X|>d)+¢€¢2+P(|X,— X| >M—1|X])
—0+¢/2<e

(2a) Addition: Sei F,,, F' die cdf von X,,, X und ¢ eine Stetigkeitsstelle von F. Fir e > 0:

P(X,+Y, <t)=P(X,+ Y, <t,|V,—c| <€)+ P(X,+ Y, <t |V, —c| >¢)
<PX,<t—c+e)+P(]Y,—c|>¢)
=F,(t—c+e)+P(|Y,—c| >e).
Grenzubergang: limsup P(X,, +Y, < t) < F(t — ¢ + ¢). Analog fir liminf. Da e beliebig:
P(X,+Y,<t)—= F(t—c).
(2b) Multiplikation: Analog mit P(X,.Y,, < t) = P(X,, < t/Y,) und Approximation Y,, ~
c. 0

5.4 Das Gesetz der groBen Zahlen

Satz 1

[Schwaches Gesetz der gro3en Zahlen] Seien X, X,,... iid mit E(X;) = p und
Var(X;) = 0% < co. Dann gilt

_ 1 & =
Xn:_g Xz_> o
(B 8
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Beweis. Mit der Tschebyschow-Ungleichung: Flr e > 0

Var(X,,)

2

P(IX, = pl >€) <

€

(1)

n

1
T 22 Z Var(X;) (Unabhangigkeit)
=1
no? o2
“wE e P 0

Satz 2

[Starkes Gesetz der groBen Zahlen (ohne Beweis)] Unter denselben Voraussetzun-
gen qilt sogar

Xnﬁhu.

Bemerkung: Der Beweis des starken Gesetzes ist technisch anspruchsvoll und verwen-
det entweder Martingaltheorie oder die Borel-Cantelli-Lemmata. Siehe Durrett (2019) fir
Details.

Beispiel 5.4.1
[MUnzwurf und frequentistische Interpretation] Sei p € (0, 1) die Wahrscheinlichkeit fir
Kopf. Definiere

1 Kopf beim i-ten Wurf,
" 10 Zahl beim i-ten Wurf.

Dann ist X,, die relative Haufigkeit von Kopf in n Wirfen.

Nach dem Gesetz der groBen Zahlen: X,, 2 p.

Interpretation: Die relative Haufigkeit konvergiert in Wahrscheinlichkeit gegen die
Wahrscheinlichkeit. Dies rechtfertigt die frequentistische Interpretation: Wahrschein-
lichkeit ist der Grenzwert der relativen Haufigkeit.

Quantitativ (mit Tschebyschow): Fiir n = 10000, p = 0,5, ¢ = 0,01:

Var(X;) 0,25
nez 10000 - 0,0001

P(|X,—05] >0,01) < =0,25.

Mit Wahrscheinlichkeit mindestens 75% liegt die relative Haufigkeit innerhalb von 1%
um 50%.
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5.5 Der zentrale Grenzwertsatz

Satz 1
[Zentraler Grenzwertsatz (CLT)] Seien X, X, ...iid mit E(X;) = pund 0 < Var(X;) =
0% < 0. Sei . .
7 - V(X — p) _ > im (Xi — )
" o o\/n '
Dann gilt
Z, % N(0,1),

d.h. fur alle z € R:
lim P(Z, < z) = ®(z2),

n—00

wobei ¢ die cdf der Standardnormalverteilung ist.
Aquivalent: X, ist approximativ N (u, o%/n) verteilt.

Bemerkung: Der Beweis verwendet charakteristische Funktionen und ist technisch. Eine
Beweisskizze:

Beweisskizze via charakteristische Funktionen. Sei Y; = (X; — n)/o, sodass E(Y;) = 0,
Var(Y;) = 1. Die charakteristische Funktion von Y; ist ¢(t) = E(e").

Taylor-Entwicklung (falls E(|Y;|?) < oo

2 2

t t
go(t):1+z't~0—5-1+0(t2):1—§+0(t2).

Die charakteristische Funktion von Z,, = \/iﬁ Yo, Y ist

Pz, (t H (t/vn) = [p(t/Vn)]"

[1 — — 4o t2/n)r

_t/2 (mit (1 4+ x/n)" — €%).

Dies ist die charakteristische Funktion von N(0, 1). Nach dem Stetigkeitssatz von Lévy folgt
d
Z, — N(0,1).0
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Beispiel 5.5.1

[Binomialverteilung] Sei X; ~ Bernoulli(p) iid. Dann E(X;) = p, Var(X;) = p(1 — p).
Die Summe S,, = Y, X; ~ Binomial(n, p) hat exakte Verteilung

Nach dem CLT:

Numerisch: Fur n = 100, p = 0,3 schatze P(S,, > 35):
Exakt (mit Computer):

100

1
Pisyz35)= 3 (1)o7 ~ 0762

k=35
CLT-Approximation:
P(S,>35)~P|Z> 55— 50
4/100-0,3-0,7
)
=P(Z>—)=P(Z>1,091) ~ 0,1377.
(22 75) = P00

Mit Stetigkeitskorrektur (besser flir diskrete Verteilungen):

34,5 — 30

P(S,>35)~P|Z>
Fazs ( W

) = P(Z >0,982) ~ 0,1631.

Naher am exakten Wert!

Satz 2

[Berry-Esséen-Ungleichung] Falls E|X; — ul*> < oo, dann existiert eine universelle

Konstante C' mit
- CE|X; — p?

sup |P(Z, < 2) = 9(3)] < — 5

Die beste bekannte Konstante ist C' &~ 0,4748.

Interpretation: Der Approximationsfehler ist O(n='/2). Fiir Genauigkeit 0,01 bendtigen

wir n. ~ 10000 (abhangig vom dritten Moment).
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5.6 Die Delta-Methode

Satz 1
[Delta-Methode] Sei g : R — R differenzierbar mit ¢'(1) # 0. Falls

M 4, N(0,1),

(0}

dann gilt i
V(9(Xa) — g(p))
alg'(w)]

Aquivalent: ¢(X,,) ist approximativ N (g(p), o2[¢'(1)]?/n) verteilt.

4 N(0,1).

Beweis. Taylor-Entwicklung von g um p:

9(Xn) = g(p) + ¢'(W)(X0 — 1) + R,

wobei R, = o(|X,, — p|) der Rest ist.
Multipliziere mit /n:

Vn(g9(Xs) = g(w) = ¢'(W)Vn(Xn — p) + VnR,.

Da X, & p (WLLN) und R, = o(|X, — ul), gilt ViR, = op(1) (verschwindet in Wahr-
scheinlichkeit).
Mit Slutsky:

Vi(g(Xa) — g(w) = ¢ (WX, — ) + op(1) % ¢'(1) - N(0,0%) = N(0,0%[¢'()]?). O

Beispiel 5.6.1

[Konfidenzintervall fir ;2] Seien X, ..., X,, iid mit E(X;) = u, Var(X;) = o2. Schatze
7=pu2durch?=X.

n"

Mit g(z) = 22 ist ¢'(x) = 2z, also ¢'(1) = 2u. Nach der Delta-Methode:
V(X = i) N0, 44°0%).
Ein approximatives 95%-Konfidenzintervall fir .2

2| X, s
v |’

wobei s die Stichprobenstandardabweichung ist.

p2e | X2 +£1,96
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