X Research Agent

OpenClaw Skill — Einrichtungshandbuch

Automatisierte X/Twitter-Recherche
nach personalisierten Interessen

Version: 1.0
Datum: 11. Februar 2026
Autor: VA Engineering GmbH
Projekt: Granaria Foundation
Plattform: OpenClaw Agent Framework

Dieses Handbuch beschreibt die vollstindige Einrichtung eines X/Twitter-Suchagenten

als OpenClaw-Skill mit interessenbasierter Filterung.

X Research Agent — OpenClaw

v1.0 | Februar 2026

10

11

12

13

14

Inhaltsverzeichnis

Uberblick

1.1 Funktionsumfang
1.2 Voraussetzungen

X API Zugang einrichten

2.1 Developer Account erstellen
2.2 App erstellen und Bearer Token generieren.
2.3 Token in der Shell konfigurieren

Verzeichnisstruktur

3.1 Verzeichnisse anlegen

Datei 1: SKILL.md

Datei 2: x-api.md (API-Referenz)

5.1 Suchoperatoren
5.2 Response-Struktur
5.3 Rate Limits

Datei 3: interests.yaml (Interessen-Konfiguration)
Datei 4: xparse.py (JSON-Parser)
Datei 5: xsearch.sh (Batch-Suchskript)

Installation — Schritt fiir Schritt

9.1 Schritt 1: Verzeichnisse erstellen.
9.2 Schritt 2: Bearer Token setzen
9.3 Schritt 3: Dateien erstellen.
9.4 Schritt 4: Berechtigungen setzen
9.5 Schritt 5: Verbindung testen
9.6 Schritt 6: Batch-Suche ausfihren

Verwendung

10.1 Im OpenClaw Chat
10.2 Direkt im Terminal
10.3 Vollstdndigen Digest generieren
10.4 Thread verfolgen
10.5 Eigenes Profil analysieren

Interessen anpassen

Posting auf X (optional)

12.1 Zuséatzliche Credentials
12.2 Post senden (Python)

Fehlersuche

13.1 Debugging-Befehle00

Dateiiibersicht

NS]

w W NN NN

L

[S13G; BTSNGTN

10

............ 10
............ 10
............ 10
............ 10
............ 10
............ 10

10

............ 10
............ 11
............ 11
............ 11
............ 11

12

12

............ 12
............ 13

13

............ 13

14

X Research Agent — OpenClaw v1.0 | Februar 2026

1 Uberblick

Der X Research Agent ist ein OpenClaw-Skill, der die X/Twitter Search API nutzt, um
automatisiert relevante Posts zu recherchieren. Der Agent zerlegt Forschungsfragen in gezielte
Suchanfragen, filtert nach konfigurierten Interessen und erstellt zusammengefasste Briefings.

1.1 Funktionsumfang

Der Agent unterstiitzt folgende Aufgaben:
e Zerlegung von Forschungsfragen in 3-5 gezielte API-Queries
o Suche {iber die X Search API (letzte 7 Tage)
o Engagement-basierte Sortierung (Likes, Impressions, Retweets)
e Thread-Verfolgung via conversation_id
o Deep-Dive in verlinkte Inhalte (GitHub, Blogs, Docs)
o Personalisierte Filterung nach gespeicherten Interessen
o Export als Markdown-Briefing

1.2 Voraussetzungen

Komponente Anforderung

OpenClaw Installiert und lauffahig

X Developer Account Free Tier ausreichend

Bearer Token Read-only (OAuth 2.0 App-Only)
Python 3 Fiir JSON-Parsing

curl Fiir API-Aufrufe

2 X API Zugang einrichten

2.1 Developer Account erstellen

Offne https://developer.x.com/en/portal/petition/essential/basic-info
Melde dich mit deinem X-Account an

Beschreibe den Anwendungsfall (z. B. “Research and analysis of public discourse”)
Akzeptiere die Developer Agreement

W=

[\
[\

App erstellen und Bearer Token generieren

Im Developer Portal: Projects & Apps — + Add App
App-Name vergeben (z. B. openclaw-x-research)

Unter Keys and Tokens: Bearer Token generieren
Token kopieren und sicher speichern

W=

2.3 Token in der Shell konfigurieren
Trage den Bearer Token in deine Shell-Konfiguration ein:

~/.zshrc (oder ~/.bashrc)
export X_BEARER_TOKEN="AAAAAAAAAAAAAAAAAAAAAXXXXXXXXXX..."

Danach Shell neu laden:

source ~/.zshrc

https://developer.x.com/en/portal/petition/essential/basic-info

X Research Agent — OpenClaw v1.0 | Februar 2026

Verbindung testen:

curl -s -H "Authorization: Bearer $X_BEARER_TOKEN" \
"https://api.x.com/2/tweets/search/recent?query=test&max_results=10"

\
| python3 -m json.tool | head -5

Bei erfolgreicher Verbindung erscheint eine JSON-Antwort mit "data: [{...}].

! Wichtig

Der Bearer Token erlaubt nur Lese-Zugriff. Zum Posten werden zusétzlich OAuth 1.0a
User-Credentials benotigt (Consumer Key, Consumer Secret, Access Token, Access Token
Secret) — siehe Abschnitt 12.

3 Verzeichnisstruktur

Der Skill wird unter ~/.openclaw/skills/ installiert:

~/.openclaw/skills/x-research/
SKILL .md # Skill-Definition (Trigger,
Beschreibung)
references/

x-api.md # X API Referenzdokumentation
interests.yaml # Personalisierte Interessen-
Konfiguration
scripts/
xparse.py # JSON-Parser fuer API-Responses
xsearch.sh # Batch-Suchskript
~/clawd/drafts/ # Output-Verzeichnis fuer Briefings

3.1 Verzeichnisse anlegen

mkdir -p ~/.openclaw/skills/x-research/references
mkdir -p ~/.openclaw/skills/x-research/scripts
mkdir -p ~/clawd/drafts

4 Datei 1: SKILL.md

Die zentrale Skill-Datei definiert Trigger-Keywords, Beschreibung und den Research-Loop.

~/.openclaw/skills/x-research/SKILL.md

name: x-research

description: >
General -purpose X/Twitter research agent. Searches X for
real-time perspectives, dev discussions, product feedback,
cultural takes, breaking news, and expert opinions.
Use when: (1) user says "x research', "search x for',
"search twitter for", "what are people saying about",

X Research Agent — OpenClaw v1.0 | Februar 2026

> s s
, (2) user is working on something where

recent X discourse would provide useful context,

(3) user wants to find what devs/experts/community thinks.

NOT for: posting tweets, account management, or historical

archive searches beyond 7 days.

Unterhalb des YAML-Headers folgt die Markdown-Dokumentation mit dem Research-Loop
(Abschnitte 1-6): Decompose, Search, Follow Threads, Deep-Dive, Synthesize, Save.
Die Trigger-Keywords im Uberblick:

Trigger-Phrase Beispiel

X research “X research zu Polymarket”

search x for “Search X for MCP server news”

search twitter for “Search Twitter for trading bots”

what are people saying about “What are people saying about OpenClaw?”
what’s twitter saying “What’s Twitter saying about multi-agent?”
check x for “Check X for WhatsApp automation”

X search “X search: self-hosting AI”

/x-research “/x-research Hyperliquid”

5 Datei 2: x-api.md (API-Referenz)

~/.openclaw/skills/x-research/references/x-api.md

X API Reference

Authentication
Bearer token from env var X_BEARER_TOKEN.
-H "Authorization: Bearer $X_BEARER_TOKEN"

Search Endpoint
GET https://api.x.com/2/tweets/search/recent
Covers last 7 days. Max 100 results per request.

Standard Query Params

tweet.fields=created_at ,public_metrics,author_id,
conversation_id,entities

expansions=author_id

user.fields=username ,name,public_metrics

max_results=100

sort_order=relevancy (oder recency)

5.1 Suchoperatoren

Operator Beispiel Beschreibung

Keyword OpenClaw agent Implizites AND

OR bun OR deno Muss Grof3buchstaben sein

- -is:retweet Negation / Ausschluss

O (fast OR perf) Gruppierung

from: from:elonmusk Posts eines bestimmten Users
to: to:elonmusk Replies an einen User

X Research Agent — OpenClaw

v1.0 | Februar 2026

Operator Beispiel Beschreibung

#buildinpublic Hashtag-Suche

$ $AAPL Cashtag (Finanz-Ticker)
lang: lang:en Sprachfilter (BCP-47)
is:retweet -is:retweet Retweets filtern
is:reply -is:reply Replies filtern
has:media has:media Enthalt Medien
has:1links has:links Enthéalt Links

url: url:github.com Links zu Domain

conversation_id:

conversation_id:123 Thread nach Root-Tweet

Die Operatoren min_likes, min_retweets und
verfiigbar. Engagement muss nachtraglich iiber

min_replies sind im Free Tier nicht
public_metrics gefiltert werden.

5.2 Response-Struktur

{
"data": [{
"id": "tweet_id",
DEesET8 T,,07,
"author_id": "user_id",
"created_at": "2026-...",
"public_metrics": {
"retweet_count": 0, "reply_count": O,
"like_count": 0, "impression_count": O
Lo
"entities": {
"urls": [{"expanded_url": "https://..."}],
"mentions": [{"username": "..."}],
"hashtags": [{"tag": "..."}]
}
1,
"includes": {
"users": [{"id": "...", "username": "...",
"name": "...", "public_metrics":
To
"meta": {"next_token": "...", "result_count":
¥

5.3 Rate Limits

Ebene Limit
App-Level 450 Requests / 15 Minuten
User-Level 300 Requests / 15 Minuten

512 Zeichen
ca. 10 pro Query

Max Query-Lénge
Max Operatoren

o0 0 3T

100}

6 Datei 3: interests.yaml (Interessen-Konfiguration)

Diese Datei definiert die personalisierten Interessen fiir die Suche. Der Agent generiert daraus

automatisch die passenden Queries.

X Research Agent — OpenClaw v1.0 | Februar 2026

~/.openclaw/skills/x-research/references/interests.

X Research Agent -- Interessen-Konfiguration
Jedes Interesse generiert eine eigene API-Query.
Passe Keywords und Sprache nach Bedarf an.

interests:

- name: OpenClaw Ecosystem
query: "OpenClaw -is:retweet"
lang: null # alle Sprachen
priority: high

- name: AI Trading Bots
query: °’"AI trading" (bot OR automation OR agent) -is:retweet’
lang: en
priority: high

- name: Polymarket
query: "Polymarket (prediction OR AI OR agent) -is:retweet"
lang: en
priority: high

- name: MCP Server
query: ’"MCP server" (build OR integration OR tool) -is:retweet’
lang: null
priority: medium

- name: WhatsApp AI Integration
query: "WhatsApp (AI OR bot OR automation OR agent) -is:retweet"
lang: en
priority: medium

- name: Multi-Agent AI
query: ’"multi-agent" (AI OR LLM OR autonomous) -is:retweet’
lang: en
priority: medium

- name: Self-Hosting AI
query: "(self-host OR self-hosted) (AI OR LLM OR agent) -is:retweet"
lang: en
priority: low

- name: Crypto DeFi Agents
query: "(DeFi OR crypto) (AI agent OR autonomous) -is:retweet"
lang: en
priority: low

Globale Einstellungen

settings:
max_results_per_query: 20
sort_order: relevancy
min_impressions: 100 # Post-hoc Filter
min_likes: 5 # Post-hoc Filter
output_dir: ~/clawd/drafts
filename_pattern: "x-digest-{date}.md"

Um neue Interessen hinzuzufiigen, einfach einen neuen Block unter interests: ergénzen.
Das Feld priority steuert die Reihenfolge im Digest.

7 Datei 4: xparse.py (JSON-Parser)

Das Parser-Skript wandelt rohe API-Responses in lesbaren Output um.

X Research Agent — OpenClaw v1.0 | Februar 2026

~/ .openclaw/skills/x-research/scripts/xparse.py

#!/usr/bin/env python3
"""X API Response Parser fuer OpenClaw x-research Skill.
Liest JSON von stdin, gibt formatierte Tweet-Liste aus.

Usage:
curl -s ... | python3 xparse.py
curl -s ... | python3 =xparse.py --min-likes 10
curl -s ... | python3 xparse.py --min-impressions 500

import json
import sys
import argparse

def parse_args():
p = argparse.ArgumentParser (description=’X API Response Parser’)
p.-add_argument (' --min-likes’, type=int, default=0,
help=’Minimum Likes fuer Anzeige’)

p.add_argument (' --min-impressions’, type=int, default=0,
help=’Minimum Impressions fuer Anzeige’)
p.add_argument (’--sort-by’, choices=[’likes’, ’impressions’, ’recency’],

default=’1likes’, help=’Sortierung’)
p.add_argument (' --1limit’, type=int, default=0,
help=’>Max Anzahl Ergebnisse (0=alle)’)
p.add_argument (’--markdown’, action=’store_true’,
help=’Markdown-Ausgabe’)
return p.parse_args ()

def main():
args = parse_args ()
data = json.load(sys.stdin)

Error handling
if ’errors’ in data and ’data’ not in data:
for e in datal[’errors’]:
print (£"API Error: {e.get(’message’, ’Unknown’)}", file=sys.stderr)
sys.exit (1)

if ’status’ in data and data.get(’status’) == 429:
print ("Rate Limit erreicht. 15 Min warten.", file=sys.stderr)

sys.exit (429)

User-Lookup

users = {}
for u in data.get(’includes’, {}).get(’users’, [1):
users[ul’id’]] = u

tweets = data.get(’data’, [])
count = data.get(’meta’, {}).get(’result_count’, 0)

Engagement-Filter
filtered = []
for t in tweets:
m = t[’public_metrics’]
if m[’like count’] >= args.min_likes and \
m[’impression_count’] >= args.min_impressions:
filtered.append (t)

Sortierung
if args.sort_by == ’likes’:
filtered.sort(key=lambda t: t[’public_metrics’][’like_count’],
reverse=True)
elif args.sort_by == ’impressions’:
filtered.sort(key=lambda t: t[’public_metrics’][’impression_count’],
reverse=True)

Limit
if args.limit > O:
filtered = filtered[:args.limit]

X Research Agent — OpenClaw v1.0 | Februar 2026

Ausgabe
for t in filtered:
u = users.get(t[’author_id’], {})

m = t[’public_metrics’]
uname = u.get(’username’, ’'77)
urls = [

url.get (’expanded_url’, °’’)
for url in t.get(’entities’, {}).get(’urls’, [])
if url.get(’expanded_url’)

if args.markdown:
print (£"- *x@{uname}** ({m[’like_count’]}L, "
f"{m[’ impression_count’]}I): "
f'"{t[’text] [:200]2}...")
link = f"https://x.com/{uname}/status/{t[’id’]}"
print (£" [Tweet] ({1link})")
for 1lnk in urls[:2]:
print (£" - [{1nk[:60]1}...]1({1nk})")
print ()
else:
print (f"@{uname} | {m[’like_count’]}L "
f'"{m[’retweet_count >]}RT {m[’impression_count’]}I")
print (£" {t[’text’][:300]}")
print (£" https://x.com/{unamel}/status/{t[>id’1}")
for 1lnk in urls([:2]:
print (£" -> {1lnk}")
print ()

Summary
shown = len(filtered)

print (f"--- {shownl}/{count} Tweets angezeigt ---")
if count > shown:
skipped = count - shown
print (£" ({skipped} durch Filter ausgeblendet)")
if __mame__ == ’ _ main__’:
main ()

Skript ausfithrbar machen:

chmod +x ~/.openclaw/skills/x-research/scripts/xparse.py

8 Datei 5: xsearch.sh (Batch-Suchskript)

Dieses Shell-Skript liest die interests.yaml und fiihrt alle Searches automatisch durch.

~/ .openclaw/skills/x-research/scripts/xsearch.sh

#!/bin/zsh

X Research Agent -- Batch Search

Sucht alle Interessen aus interests.yaml

Usage: ./xsearch.sh [--min-likes N] [--markdown]
set -e

Konfiguration
SKILL_DIR="$HOME/.openclaw/skills/x-research"
PARSER="$SKILL_DIR/scripts/xparse.py"
INTERESTS="$SKILL_DIR/references/interests.yaml"
OUTPUT_DIR="$HOME/clawd/drafts"

DATE=$(date +JY-%m-%d)
OUTPUT="$0UTPUT_DIR/x-digest -$DATE.md"

X Research Agent — OpenClaw

v1.0 | Februar 2026

API Parameter

FIELDS="tweet.fields=created_at ,public_metrics ,author_id"
FIELDS="$FIELDS,conversation_id ,entities"
FIELDS="$FIELDS&expansions=author_id"
FIELDS="$FIELDS&user.fields=username ,name ,public_metrics"
FIELDS="$FIELDS&sort_order=relevancy"
FIELDS="$FIELDS&max_results=20"

Argumente weiterleiten an Parser
PARSER_ARGS="g@"

Header

echo "# X Research Digest -- $DATE" > "$0UTPUT"

echo "" >> "$0UTPUT"

echo "Automatisch generiert vom x-research Skill." >> "$OUTPUT"
echo "" >> "$0OUTPUT"

Queries aus YAML extrahieren (einfacher Parser)
Liest name: und query: Felder
CURRENT_NAME=""
while IFS= read -r line; do
case "$line" in
"- name:"x)
CURRENT_NAME=$(echo "$line" | sed ’s/.*- name: //’)

"query :")

if [[-n "$QUERY" && -n "$CURRENT_NAME"]]; then
echo ">> Suche: $CURRENT_NAME"
echo " Query: $QUERY"

URL-Encode
ENCODED=$ (python3 -c "import urllib.parse; \
print (urllib.parse.quote (> $QUERY’))")

API Call

echo "" >> "$0UTPUT"

echo "## $CURRENT_NAME" >> "$OUTPUT"
echo "" >> "$0UTPUT"

curl -s -H "Authorization: Bearer $X_BEARER_TOKEN" \
"https://api.x.com/2/tweets/search/recent?\
query=$ENCODED&S$FIELDS" \
| python3 "$PARSER" --markdown $PARSER_ARGS \
>> "$OUTPUT" 2>&1

echo "" >> "$0UTPUT"

Rate Limit: kurze Pause zwischen Queries
sleep 1
fi
esac
done < "$INTERESTS"

Footer

echo "---" >> "$OUTPUT"

echo "## Metadaten" >> "$0UTPUT"

echo "- *xDatum:** $DATE" >> "$OUTPUT"

echo "- x*xConfig:**x $INTERESTS" >> "$O0UTPUT"
echo "- x*xQutput:** $0UTPUT" >> "$OUTPUT"
echo ""

echo "Digest gespeichert: $0UTPUT"

QUERY=$(echo "$line" | sed "s/.*xquery: //;s/~[’\"1//;s/[°\"1$//")

Skript ausfithrbar machen:

chmod +x ~/.openclaw/skills/x-research/scripts/xsearch.

9

sh

X Research Agent — OpenClaw v1.0 | Februar 2026

9 Installation — Schritt fiir Schritt

Alle Befehle in einem Terminal ausfiithren:
9.1 Schritt 1: Verzeichnisse erstellen

mkdir -p ~/.openclaw/skills/x-research/references
mkdir -p ~/.openclaw/skills/x-research/scripts
mkdir -p ~/clawd/drafts

9.2 Schritt 2: Bearer Token setzen

echo ’export X_BEARER_TOKEN="DEIN_TOKEN_HIER"’> >> ~/.zshrc
source ~/.zshrc

9.3 Schritt 3: Dateien erstellen

Erstelle die fiinf Dateien aus den Abschnitten 4-8. Alternativ aus einem Git-Repository klonen,
falls verfiighar.

9.4 Schritt 4: Berechtigungen setzen

chmod +x ~/.openclaw/skills/x-research/scripts/xparse.py
chmod +x ~/.openclaw/skills/x-research/scripts/xsearch.sh

9.5 Schritt 5: Verbindung testen

curl -s -H "Authorization: Bearer $X_BEARER_TOKEN" \
"https://api.x.com/2/tweets/search/recent?query=test&max_results=10"
\
| python3 ~/.openclaw/skills/x-research/scripts/xparse.py

9.6 Schritt 6: Batch-Suche ausfiihren

~/.openclaw/skills/x-research/scripts/xsearch.sh --min-likes 5

Ergebnis

Das Ergebnis wird gespeichert unter: ~/clawd/drafts/x-digest-YYYY-MM-DD.md

10 Verwendung

10.1 Im OpenClaw Chat

Einfach einen der Trigger-Phrasen verwenden:

10

X Research Agent — OpenClaw v1.0 | Februar 2026

> x research: was sagen Devs iiber Polymarket AI agents?
> search x for MCP server integrations

> /x-research trading automation 2026
> check x for WhatsApp AI bots

OpenClaw erkennt den Trigger, liest die SKILL.md, und fihrt den Research-Loop automatisch
aus.

10.2 Direkt im Terminal
Einzelne Query manuell ausfithren:

P=~/.openclaw/skills/x-research/scripts/xparse.py

curl -s -H "Authorization: Bearer $X_BEARER_TOKEN" \
"https://api.x.com/2/tweets/search/recent?\
query=Polymarket’20prediction%20-is%3Aretweet&\
max_results=50&\
tweet.fields=created_at ,public_metrics,author_id,entities&\
expansions=author_id&\
user .fields=username ,name,public_metrics&\
sort_order=relevancy" \
| python3 $P --min-likes 10 --sort-by impressions

10.3 Vollstandigen Digest generieren

Alle Interessen durchsuchen, min. 5 Likes
~/.openclaw/skills/x-research/scripts/xsearch.sh --min-likes 5

Nur Top-Posts mit Markdown-Output
~/.openclaw/skills/x-research/scripts/xsearch.sh \
--min-likes 20 --1imit 5 --markdown

10.4 Thread verfolgen
Wenn ein Tweet interessant ist, den Thread laden:

conversation_id aus dem urspruenglichen Tweet
curl -s -H "Authorization: Bearer $X_BEARER_TOKEN" \
"https://api.x.com/2/tweets/search/recent?\
query=conversation_id: TWEET_ID&\
max_results=100&\
tweet.fields=created_at ,public_metrics,author_id&\
expansions=author_id&\
user.fields=username ,name&\
sort_order=recency" \
| python3 $P

10.5 Eigenes Profil analysieren

curl -s -H "Authorization: Bearer $X_BEARER_TOKEN" \
"https://api.x.com/2/tweets/search/recent?\
query=from%3ADEIN_HANDLE&\

11

X Research Agent — OpenClaw v1.0 | Februar 2026

max_results=100&\
tweet.fields=created_at ,public_metrics,author_id,entities&\
expansions=author_id&\
user.fields=username,name,public_metrics,description&\
sort_order=recency" \

| python3 $P --sort-by impressions

11 Interessen anpassen

Die Datei interests.yaml ist die zentrale Konfiguration. Hier einige Beispiele fiir neue Eintrage:

- name: Hyperliquid Trading
query: "Hyperliquid (bot OR trading OR perps) -is:retweet"
lang: en
priority: high

- name: Alpaca API
query: "Alpaca (trading OR API OR stocks) -is:retweet"
lang: en
priority: medium

- name: LaTeX Tipps
query: "LaTeX (tips OR template OR Texifier) -is:retweet"
lang: null
priority: low

Die settings-Sektion steuert globale Filter:

settings:
max_results_per_query: 20
sort_order: relevancy
min_impressions: 100
min_likes: 5
output_dir: ~/clawd/drafts
filename_pattern: "x-digest-{date}.md"

API-Limit pro Query

oder: recency

Post -hoc Mindest -Impressions
Post-hoc Mindest-Likes

H H H ®

12 Posting auf X (optional)

Posting erfordert OAuth 1.0a mit Write-Berechtigung — der Bearer Token reicht dafiir
nicht aus.

12.1 Zusatzliche Credentials

Im X Developer Portal unter User authentication settings:
1. App Permissions auf Read and Write setzen
2. Unter Keys and Tokens generieren:
o Consumer Key (API Key)
o Consumer Secret (API Key Secret)
o Access Token
e Access Token Secret
Diese in die Shell-Konfiguration eintragen:

12

X Research Agent — OpenClaw v1.0 | Februar 2026

~/.zshrc

export X_CONSUMER_KEY="..."

export X_CONSUMER_SECRET="..."
export X_ACCESS_TOKEN="..."

export X_ACCESS_TOKEN_SECRET="..."

12.2 Post senden (Python)

#!/usr/bin/env python3
"""Post a tweet via X API v2 with OAuth 1.0a."""

import os
from requests_oauthlib import OAuthlSession

oauth = OAuthlSession(

os.environ[1,
client_secret=os.environ[1,
resource_owner_key=os.environ|[1,
resource_owner_secret=os.environ[1,
)
payload = { : }

resp = oauth.post(
json=payload,
)

print (£)
print (resp.json())

Voraussetzung: pip install requests-oauthlib

13 Fehlersuche

Problem Ursache Losung
401 Unauthorized Token ungiiltig oder ab- Neuen Bearer Token generie-
gelaufen ren

429 Too Many Rate Limit erreicht 15 Minuten warten

Requests

0 results Query zu spezifisch Weniger Operatoren, breitere
Keywords

0 results Token nicht in Shell echo $X_BEARER_TOKEN prii-
fen

Spam in Ergebnissen Crypto-Spam -$ und -airdrop -giveaway
hinzufiigen

Nur englische Posts lang:en gesetzt lang: entfernen oder &ndern

Parser-Fehler Python-Version python3 -version (min. 3.8)

13.1 Debugging-Befehle

Token pruefen
echo $X_BEARER_TOKEN | head -c 20

Rohe API-Response anzeigen
curl -s -H "Authorization: Bearer $X_BEARER_TOKEN" \

13

X Research Agent — OpenClaw v1.0 | Februar 2026

"https://api.x.com/2/tweets/search/recent?query=test&max_results=10"
\
| python3 -m json.tool

Rate Limit Status pruefen (im Response Header)
curl -si -H "Authorization: Bearer $X_BEARER_TOKEN" \
"https://api.x.com/2/tweets/search/recent?query=test&max_results=10"

\

| grep -i "x-rate-limit"

14 Dateiuibersicht

Zusammenfassung aller Dateien und deren Funktion:

Datei Funktion
~/ .zshrc Bearer Token als Umgebungsvariable
skills/x-research/SKILL.md Skill-Definition mit Triggern und

Research-Loop
skills/x-research/references/x-api ABl-Referenz (Endpoints, Operatoren,

Limits)
skills/x-research/references/interd¥rsoyahiierte Interessen-
Konfiguration
skills/x-research/scripts/xparse.py SON-Parser mit Filtern und Sortie-
rung
skills/x-research/scripts/xsearch.$latch-Suchskript fiir alle Interessen
~/clawd/drafts/x-digest—*.md Generierte Digest-Dateien
VA Engineering GmbH / Granaria Foundation — Februar 2026

14

	Überblick
	Funktionsumfang
	Voraussetzungen

	X API Zugang einrichten
	Developer Account erstellen
	App erstellen und Bearer Token generieren
	Token in der Shell konfigurieren

	Verzeichnisstruktur
	Verzeichnisse anlegen

	Datei 1: SKILL.md
	Datei 2: x-api.md (API-Referenz)
	Suchoperatoren
	Response-Struktur
	Rate Limits

	Datei 3: interests.yaml (Interessen-Konfiguration)
	Datei 4: xparse.py (JSON-Parser)
	Datei 5: xsearch.sh (Batch-Suchskript)
	Installation – Schritt für Schritt
	Schritt 1: Verzeichnisse erstellen
	Schritt 2: Bearer Token setzen
	Schritt 3: Dateien erstellen
	Schritt 4: Berechtigungen setzen
	Schritt 5: Verbindung testen
	Schritt 6: Batch-Suche ausführen

	Verwendung
	Im OpenClaw Chat
	Direkt im Terminal
	Vollständigen Digest generieren
	Thread verfolgen
	Eigenes Profil analysieren

	Interessen anpassen
	Posting auf X (optional)
	Zusätzliche Credentials
	Post senden (Python)

	Fehlersuche
	Debugging-Befehle

	Dateiübersicht

