OpenClaw Voice Integration

WhatsApp Sprachnachrichten mit OpenAl TTS

Technisches Handbuch

Version 1.0

Februar 2026

OpenClaw Voice Integration 1
Inhaltsverzeichnis

1 Ubersicht 2

1.1 Anwendungsfall 2

1.2 Funktionen 2

2 Architektur 2

2.1 Komponenten e e e 2

2.2 Datenfluss 2

2.3 Verzeichnisstrukturo 3

3 Voraussetzungen 3

3.1 Softwareo 3

3.2 APIKeys 3

3.3 Python-Pakete 3

4 Installation 4

4.1 Verzeichnisstruktur anlegen 4

4.2 OpenAl API Key konfigurieren 4

4.3 Voice-Dateien erstellen oo 4

5 Konfiguration 4

5.1 Kontakte hinzufligeno 4

5.2 TTS-Einstellungen 4

5.3 Verfligbare Stimmen L 5

5.4 LaunchAgent fiir Autostart 5

5.4.1 LaunchAgent aktivieren 6

6 Dateien im Detail 6

6.1 responder.py — TTS-Generierung 6

6.2 sender.py — WhatsApp-Versand 8

6.3 watcher.py — Log-Uberwachung 10

7 Workflow-Beispiel 12

7.1 Sandy fragt nach Nachbarschaftshilfe 12

8 Fehlerbehebung 13

8.1 Watcher lauft nicht 13

8.2 wacli nicht gefundeno 13

8.3 OpenAl API Fehler e 14

8.4 Store is locked (wacll) L 14

8.5 Voice-Datei manuell senden L L oL 14

9 Zusammenfassung 14

Version 1.0 — Februar 2026

OpenClaw Voice Integration 2

1 Ubersicht

Dieses System erweitert OpenClaw um automatische Sprachnachrichten-Generierung fiir Whats-
App. Wenn OpenClaw eine Textnachricht an einen konfigurierten Kontakt sendet, wird automa-
tisch eine Sprachnachricht mit derselben Antwort generiert und zugestellt.

1.1 Anwendungsfall

Das System wurde fiir die Seniorenberatung entwickelt. Altere Menschen bevorzugen oft
Sprachnachrichten, da diese einfacher zu konsumieren sind als lange Textnachrichten. Die Stimme
ist freundlich, spricht langsam und deutlich.

1.2 Funktionen

Automatische Voice-Generierung mit OpenAl TTS (Text-to-Speech)

Freundliche Frauenstimme (Nova) mit 0.9x Geschwindigkeit

HD-Audioqualitat fiir beste Verstdndlichkeit

Automatischer Versand via WhatsApp (wacli)

Multi-Kontakt-Unterstiitzung

Autostart bei Mac-Login via LaunchAgent

Deutsche Sprachausgabe garantiert

2 Architektur

2.1 Komponenten

Komponente Beschreibung

watcher.py Uberwacht gateway.log auf neue Antworten
responder.py Generiert MP3 via OpenAl TTS API

sender . py Sendet MP3 via wacli an WhatsApp
hook.py Definiert Voice-aktivierte Kontakte

LaunchAgent Startet Watcher automatisch bei Login

Tabelle 1: Voice-System Komponenten

2.2 Datenfluss

1. WhatsApp-Nachricht kommt rein (via OpenClaw Gateway)
2. OpenClaw verarbeitet und antwortet mit Text
3. Gateway schreibt Auto-replied to +49..." in gateway.log

4. Watcher erkennt neuen Log-Eintrag

Version 1.0 — Februar 2026

OpenClaw Voice Integration

5. Watcher liest letzte Assistant-Nachricht aus Session-Datei
6. Responder generiert MP3 via OpenAl TTS
7. Sender schickt MP3 via wacli an WhatsApp

2.3 Verzeichnisstruktur

~/.openclaw/
+-- skills/

I +-- schadl-seniorenberatung/
| +-- voice/
| +-- __init__.py
| +-- responder.py # TTS-Generierung
[+-- sender.py # Whatsdpp -Versand
| +-- watcher.py # Log-Ueberwachung
I +-- hook.py # Kontakt-Liste
+-- media/
| +-- voice/ # Generierte MP3s
+-- logs/
[+-- gateway.log # OpenClaw Gateway Log
I +-- voice-watcher.log # Watcher stdout
| +-- voice-watcher.err.log # Watcher stderr
+-- agents/
+-- main/
+-- sessions/ # Chat-Sessions (JSONL)

“/Library/LaunchAgents/
+-- com.openclaw.voice-watcher.plist # Autostart

3 Voraussetzungen

3.1 Software

e macOS (getestet mit macOS 14+)
e Python 3.11+4

e OpenClaw mit WhatsApp-Gateway
e wacli (WhatsApp CLI Tool)

3.2 API Keys

e OpenAl API Key mit TTS-Zugang

3.3 Python-Pakete

pip install openai

Version 1.0 — Februar 2026

OpenClaw Voice Integration

4 Installation
4.1 Verzeichnisstruktur anlegen

mkdir -p 7/.openclaw/skills/schadl-seniorenberatung/voice
mkdir -p ~/.openclaw/media/voice
mkdir -p ~/.openclaw/logs

4.2 OpenAl API Key konfigurieren
Option A: Umgebungsvariable (empfohlen)

In ~/.zshrc einfuegen:
export OPENAI_API_KEY="sk-proj-..."

Option B: Credentials-Datei

~/.openclaw/credentials/openai. json

{

n

"api_key": "sk-proj-...
X

4.3 Voice-Dateien erstellen

Erstellen Sie die Python-Dateien im Verzeichnis:
~/.openclaw/skills/schadl-seniorenberatung/voice/

Die vollstandigen Dateien finden Sie in Abschnitt 6.

5 Konfiguration

5.1 Kontakte hinzufiigen
In watcher.py die VOICE_CONTACTS definieren:

Voice-aktivierte Kontakte
VOICE_CONTACTS = {
"+4916090895924": "Wolfgang Schadl",
"+4915155561204": "Sandy",

5.2 TTS-Einstellungen

In responder.py konnen folgende Parameter angepasst werden:

Version 1.0 — Februar 2026

OpenClaw Voice Integration

Parameter Wert Beschreibung

VOICE nova Freundliche Frauenstimme

MODEL tts-1-hd HD-Qualitdt fiir beste Verstandlichkeit
speed 0.9 Etwas langsamer fiir Senioren
LANGUAGE de Deutsch als Standardsprache

Tabelle 2: TTS-Konfigurationsparameter

5.3 Verfiigbare Stimmen

Stimme Charakteristik

alloy Neutral

echo Mannlich

fable Britisch

nova Freundlich weiblich (empfohlen)
onyx Tief ménnlich

shimmer Sanft weiblich

Tabelle 3: OpenAl TTS Stimmen

5.4 LaunchAgent fiir Autostart

Erstellen Sie die Datei:

~/Library/LaunchAgents/com.openclaw.voice-watcher.plist

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>com.openclaw.voice-watcher</string>
<key>ProgramArguments</key>
<array>
<string>/Library/Frameworks/Python.framework/
Versions/3.11/bin/python3</string>
<string>/Users/mac/.openclaw/skills/

schadl -seniorenberatung/voice/watcher.py</string>

</array>
<key>RunAtLoad</key>
<true/>
<key>KeepAlive</key>
<dict>
<key>SuccessfulExit</key>
<false/>
</dict>
<key>EnvironmentVariables</key>
<dict>
<key>PYTHONPATH</key>
<string>/Users/mac/.openclaw/skills/
schadl -seniorenberatung/voice</string>

Version 1.0 — Februar 2026

OpenClaw Voice Integration

<key>0PENAI_API_KEY</key>

<string>sk-proj-...</string>

<key>HOME</key>

<string>/Users/mac</string>

<key>PATH</key>

<string>/opt/homebrew/bin: /usr/bin:/bin</string>
</dict>

<key>StandardOutPath</key>
<string>/Users/mac/.openclaw/logs/voice-watcher.log</string>
<key>StandardErrorPath</key>
<string>/Users/mac/.openclaw/logs/voice-watcher.err.log</string>
<key>ThrottleInterval</key>
<integer>10</integer>

</dict>

</plist>

5.4.1 LaunchAgent aktivieren

Laden
launchctl bootstrap gui/$(id -u) \
~“/Library/LaunchAgents/com.openclaw.voice-watcher.plist

Entladen
launchctl bootout gui/$(id -u) \
~“/Library/LaunchAgents/com.openclaw.voice-watcher.plist

Status pruefen
launchctl print gui/$(id -u)/com.openclaw.voice-watcher

6 Dateien im Detail

6.1 responder.py — TTS-Generierung
Diese Datei ist das Herzstiick der Voice-Generierung;:

#!/usr/bin/env pythond

"""Voirce Responder fuer Seniorenberatung

OpendI TTS mit freundlicher Frauenstimme mnova

Optimiert fuer Sentioren: langsames Tempo, klare Aussprache

"namnn

import os

import json

from pathlib import Path

from datetime import datetime
from openai import OpenAl

def get_openai_api_key() -> str:
"""Holt den Opendl API Key aus verschtedenen {uellen. """

1. Umgebungsvariable

Version 1.0 — Februar 2026

OpenClaw Voice Integration

if os.getenv("OPENAI_API_KEY"):
return os.getenv ("OPENAI_API_KEY")

2. OpenClaw Credentials
cred_path = Path.home() / ".openclaw/credentials/openai.json"
if cred_path.exists():
with open(cred_path) as f:
data = json.load(f)
if "api_key" in data:
return data["api_key"]

raise ValueError ("OPENAI_API_KEY nicht gefunden")

Konfiguration

VOICE = "nova" # Freundliche Frauenstimme
MODEL = "tts-1-hd" # HD Qualitaet
LANGUAGE = "de" # Deutsch

OUTPUT_DIR = Path.home() / ".openclaw/media/voice"

class VoiceResponder:
"""Generiert Sprachnachrichten fuer die Seniorenberatung.”"""
def __init__(self, voice: str = VOICE, model: str = MODEL):
self.client = OpenAI(api_key=get_openai_api_key())
self.voice = voice
self .model = model
self .output_dir = OUTPUT_DIR
self.output_dir.mkdir (parents=True, exist_ok=True)

def generate(self, text: str, contact_id: str = "default") ->
Path:
"""Generiert eine Sprachnachricht aus Text."""
Optimierungen
text = self._ensure_german (text)
text self. _optimize_for_seniors (text)

Generiere Audzo
response = self.client.audio.speech.create(
model=self .model,
voice=self .voice,
input=text,
speed=0.9 # Langsamer fuer Senioren

Speichere Dates

timestamp = datetime.now().strftime ("%Y%m%d_%H%MLS")
filename = f"seniorenberatung_{contact_id}_{timestampl}.mp3"
filepath = self.output_dir / filename

response.stream_to_file(str(filepath))
return filepath

def _ensure_german(self, text: str) -> str:
"""Stellt deutsche Aussprache sicher. """
german_starters = (
"hallo", "guten", "liebe", "sehr", "hier",

Version 1.0 — Februar 2026

OpenClaw Voice Integration

Ildasll, Ildiell, Ilderll, Ileinll, Ileinell, Ilichll,
Ilwirll, Ilesll’ lljall’ llnein’l, IIalSOII, Ilnunll

first_word = text.strip().split() [0].lower () if
text.strip() else ""

if any(first_word.startswith(s) for s in german_starters):
return text

Deutscher Praefixz fuer Spracherkennung
return f"Also: {textl}"

def _optimize_for_seniors(self, text: str) -> str:
"""Optimiert Text fuer bessere Verstaendlichkest."""

replacements = {
"EUR": " Euro",
DP0e 0 Prememi?
"z.B.": "zum Beispiel",
"bzw.": "beziehungsweise",

"usw.": "und so weiter",

"d.h.": "das heisst",

"u.a.": "unter anderem",
"ca.": "circa",
"inkl.": "inklusive",
IIMDKII : IIM D KII
}
for old, new in replacements.items():
text = text.replace(old, new)

return text

Singleton
_responder = None

def get_responder () -> VoiceResponder:
global _responder
if _responder is None:
_responder = VoiceResponder ()
return _responder

def generate_voice(text: str, phone: str = "default") -> str:
"""Houptfunktion fuer OpenClaw Integration. """
contact_id = phone.replace("+", "").replace(" ", "")[-6:]
filepath = get_responder ().generate(text, contact_id)
return str(filepath)

6.2 sender.py — WhatsApp-Versand

#!/usr/bin/env pythond
"""Whatsdpp Voice Sender wia wacli"""

import subprocess
import json

Version 1.0 — Februar 2026

OpenClaw Voice Integration

import shutil
from pathlib import Path

wacli Pfad - fuer LaunchAdgent mit wvollem Pfad
WACLI_PATH = shutil.which("wacli") or "/opt/homebrew/bin/wacli"

def send_voice_message (audio_path: str, to_phone: str) -> dict:
"""Sendet eine Sprachnachricht wvia waclz. """

Pruefe ob Datei exzistiert
if not Path(audio_path).exists ():
return {
"success": False,
"error": f"Datei nicht gefunden: {audio_path}"

Baue wacli Kommando

cmd = [
WACLI_PATH, "send", "file",
"--to", to_phone,
"--file", audio_path,

"--mime", "audio/mpeg",
"--json"
]
try:
result = subprocess.run(
cmd ,

capture_output=True,
text=True,
timeout=60

)
if result.returncode == O0:
try:
output = json.loads(result.stdout) if
result.stdout else {}
except json.JSONDecodeError:
output = {"raw": result.stdout}
return {
"success": True,
"to": to_phone,
"file": audio_path,
"output": output
}
else:
return {
"success": False,
"error": result.stderr or result.stdout,
"returncode": result.returncode
}
except subprocess.TimeoutExpired:
return {"success": False, "error": "Timeout beim Senden"}
except Exception as e:
return {"success": False, "error": str(e)}

Version 1.0 — Februar 2026

OpenClaw Voice Integration

6.3 watcher.py — Log-Uberwachung
Der Watcher ist die zentrale Komponente:

#!/usr/bin/env python3

"""Vorce Response Watcher fuer Schadl Sentorenberatung"""
import os

import sys

import json

import time

import re

from pathlib import Path

Unbuffered output fuer LaunchAgent
sys.stdout os.fdopen(sys.stdout.fileno(), ’w’, buffering=1)
sys.stderr os.fdopen(sys.stderr.fileno(), ’w’, buffering=1)

Voice-Module importieren

sys.path.insert (0, str(Path(__file__) .parent))
from responder import generate_voice

from sender import send_voice_message

Konfiguration
LOG_FILE = Path.home() / ".openclaw/logs/gateway.log"
SESSIONS_DIR = Path.home() / ".openclaw/agents/main/sessions"

Voice-aktivierte Kontakte
VOICE_CONTACTS = {
"+4916090895924": "Wolfgang Schadl",
"+4915155561204": "Sandy",

CHECK_INTERVAL = 2
MIN_RESPONSE_LENGTH
MAX_RESPONSE_LENGTH

50
2000

def get_latest_session_file():
"""Fendet die neueste Session-Datect.
if not SESSIONS_DIR.exists():
return None
sessions = 1list (SESSIONS_DIR.glob("*.jsonl"))
if not sessions:
return None
return max(sessions, key=lambda p: p.stat().st_mtime)

nann

def get_last_assistant_message(session_file):
"""Extrahtiert dte letzte Assistant-Nachricht.
try:
with open(session_file) as f:
lines = f.readlines ()

nann

for line in reversed(lines):
try:
entry = json.loads(line.strip())
if entry.get("type") == "message":

Version 1.0 — Februar 2026

OpenClaw Voice Integration

def

def

msg = entry.get("message", {1})
if msg.get("role") == "assistant":
content = msg.get("content", "")
if isinstance(content, list):
for block in content:

if block.get("type") == "text":
return block.get("text",

elif isinstance(content, str):
return content
except:
continue
return None
except Exception as e:

print (£" [watcher] Fehler: {e}")
return None

clean_for_voice(text):

"""Entfernt Markdown und Formatierung."""

text = re.sub(r’**(.*x?)\x*x> r’\1’, text)

text = re.sub(r’*(.*?)*x’, r’>\1’, text)

text = re.sub(r’#{1,6}\s*x?, ’°, text)

text = re.sub(r’\[(["\1]IH)N\INCI"\)I+\) >, r’\1°, text)

return text.strip()

process_response (phone, name) :

"""Jerarbetitet eine Antwort und sendet Voice.
session_file = get_latest_session_file()

if not session_file:

nonn

return False

response_text = get_last_assistant_message(session_file)

if not response_text:
return False

voice_text = clean_for_voice(response_text)

if len(voice_text) < MIN_RESPONSE_LENGTH:
return False

if len(voice_text) > MAX_RESPONSE_LENGTH:

voice_text = voice_text[:MAX_RESPONSE_LENGTH] + "...

print (£" [watcher] Generiere Voice...")
voice_path = generate_voice(voice_text, phone)
print (f" [watcher] Sende an {namel}...")
result = send_voice_message(voice_path, phone)

if result.get("success"
print (£" [watcher] Erfolgreich!")
return True
else:
print (f" [watcher] Fehler: {result.get(’error’)}")
return False

Version 1.0 — Februar 2026

OpenClaw Voice Integration 12

def watch_log():
"""Hauptschleife: Ueberwacht Log auf mneue Antworten. """
print (f" [watcher] Starte fuer {len(VOICE_CONTACTS)} Kontakte")

last_position = 0
if LOG_FILE.exists():
last_position = LOG_FILE.stat().st_size

while True:
try:
if not LOG_FILE.exists():
time.sleep (CHECK_INTERVAL)
continue

current_size = LOG_FILE.stat().st_size

if current_size > last_position:
with open(LOG_FILE) as f:
f.seek(last_position)

new_lines = f.readlines ()

last_position = f.tell()

for line in new_lines:
match = re.search(r’Auto-replied to (\+\d+)’,
line)
if match:
phone = match.group (1)
if phone in VOICE_CONTACTS:
name = VOICE_CONTACTS [phone]
print (f" [watcher] Neue Antwort an
{name}")

process_response (phone, name)
time.sleep (CHECK_INTERVAL)

except Exception as e:
print (f" [watcher] Fehler: {e}")
time.sleep (CHECK_INTERVAL)

if name = "

= _main_
watch_log ()

7 Workflow-Beispiel

7.1 Sandy fragt nach Nachbarschaftshilfe

1. Eingehende Nachricht
Sandy schreibt via WhatsApp:

Version 1.0 — Februar 2026

OpenClaw Voice Integration 13

yich bin 75 jahre und kann kein auto mehr fahren, wohne in wabern, sag mir die néchste
nachbarschaftshilfe*

2. OpenClaw antwortet
OpenClaw sendet eine Textantwort mit Kontaktdaten der Nachbarschaftshilfe.
3. Watcher erkennt

Im gateway.log erscheint:

2026-02-04T18:12:54Z [whatsapp] Auto-replied to +4915155561204

4. Voice wird generiert

Der Responder erstellt eine MP3-Datei:

~/.openclaw/media/voice/seniorenberatung_561204_20260204_181254 .mp3

5. Voice wird gesendet

Sandy erhilt zusétzlich zur Textnachricht eine Sprachnachricht.

8 Fehlerbehebung
8.1 Watcher lauft nicht

Status pruefen
ps aux | grep watcher

Logs pruefen
tail -50 ~/.openclaw/logs/voice-watcher.log

tail -50 ~/.openclaw/logs/voice-watcher.err.log

Manuell starten zum Testen
python3 ~/.openclaw/skills/schadl-seniorenberatung/voice/watcher.py

8.2 wacli nicht gefunden
Im LaunchAgent muss der volle Pfad zu wacli verwendet werden:

Pfad ermitteln
which wacli
Typisch: /opt/homebrew/bin/waclt

In sender.py pruefen:
WACLI_PATH = "/opt/homebrew/bin/wacli"

Version 1.0 — Februar 2026

OpenClaw Voice Integration

14

8.3 OpenAl API Fehler

API Key testen

python3 -c "

from openai import OpenAl
client = OpenAI()
print(client.models.list ())

8.4 Store is locked (wacli)
Wenn wacli blockiert ist:

Alle wacli-Prozesse beenden
pkill -9 wacli

Kurz warten, dann erneut wversuchen
sleep 3
wacli send file --to ... --file

8.5 Voice-Datei manuell senden

Letzte Voice-Datei finden
ls -1t ~/.openclaw/media/voice/ | head -5

Manuell senden
wacli send file \
--to 4915155561204 \
--file ~/.openclaw/media/voice/seniorenberatung_561204_x*.mp3

Bei Problemen immer zuerst die Log-Dateien priifen. Der Watcher schreibt alle Aktionen
und Fehler in die Log-Dateien unter ~/.openclaw/logs/.

9 Zusammenfassung

Datei Funktion

responder.py OpenAl TTS Generierung (nova, 0.9x, HD, deutsch)
sender.py WhatsApp-Versand via wacli

watcher.py Log-Uberwachung, Multi-Kontakt-Support

hook.py Voice-Kontakte Liste

LaunchAgent Autostart bei Mac-Login

Tabelle 4: Ubersicht aller Dateien

Version 1.0 — Februar 2026

OpenClaw Voice Integration

15

Ende des Handbuchs

Version 1.0 — Februar 2026

