
OpenClaw Voice Integration

WhatsApp Sprachnachrichten mit OpenAI TTS

Technisches Handbuch

Version 1.0

Februar 2026

OpenClaw Voice Integration 1

Inhaltsverzeichnis

1 Übersicht 2
1.1 Anwendungsfall . 2
1.2 Funktionen . 2

2 Architektur 2
2.1 Komponenten . 2
2.2 Datenfluss . 2
2.3 Verzeichnisstruktur . 3

3 Voraussetzungen 3
3.1 Software . 3
3.2 API Keys . 3
3.3 Python-Pakete . 3

4 Installation 4
4.1 Verzeichnisstruktur anlegen . 4
4.2 OpenAI API Key konfigurieren . 4
4.3 Voice-Dateien erstellen . 4

5 Konfiguration 4
5.1 Kontakte hinzufügen . 4
5.2 TTS-Einstellungen . 4
5.3 Verfügbare Stimmen . 5
5.4 LaunchAgent für Autostart . 5

5.4.1 LaunchAgent aktivieren . 6

6 Dateien im Detail 6
6.1 responder.py – TTS-Generierung . 6
6.2 sender.py – WhatsApp-Versand . 8
6.3 watcher.py – Log-Überwachung . 10

7 Workflow-Beispiel 12
7.1 Sandy fragt nach Nachbarschaftshilfe . 12

8 Fehlerbehebung 13
8.1 Watcher läuft nicht . 13
8.2 wacli nicht gefunden . 13
8.3 OpenAI API Fehler . 14
8.4 Store is locked (wacli) . 14
8.5 Voice-Datei manuell senden . 14

9 Zusammenfassung 14

Version 1.0 – Februar 2026

OpenClaw Voice Integration 2

1 Übersicht

Dieses System erweitert OpenClaw um automatische Sprachnachrichten-Generierung für Whats-
App. Wenn OpenClaw eine Textnachricht an einen konfigurierten Kontakt sendet, wird automa-
tisch eine Sprachnachricht mit derselben Antwort generiert und zugestellt.

1.1 Anwendungsfall

Das System wurde für die Seniorenberatung entwickelt. Ältere Menschen bevorzugen oft
Sprachnachrichten, da diese einfacher zu konsumieren sind als lange Textnachrichten. Die Stimme
ist freundlich, spricht langsam und deutlich.

1.2 Funktionen

• Automatische Voice-Generierung mit OpenAI TTS (Text-to-Speech)

• Freundliche Frauenstimme (Nova) mit 0.9x Geschwindigkeit

• HD-Audioqualität für beste Verständlichkeit

• Automatischer Versand via WhatsApp (wacli)

• Multi-Kontakt-Unterstützung

• Autostart bei Mac-Login via LaunchAgent

• Deutsche Sprachausgabe garantiert

2 Architektur

2.1 Komponenten

Komponente Beschreibung

watcher.py Überwacht gateway.log auf neue Antworten
responder.py Generiert MP3 via OpenAI TTS API
sender.py Sendet MP3 via wacli an WhatsApp
hook.py Definiert Voice-aktivierte Kontakte
LaunchAgent Startet Watcher automatisch bei Login

Tabelle 1: Voice-System Komponenten

2.2 Datenfluss

1. WhatsApp-Nachricht kommt rein (via OpenClaw Gateway)

2. OpenClaw verarbeitet und antwortet mit Text

3. Gateway schreibt Äuto-replied to +49..." in gateway.log

4. Watcher erkennt neuen Log-Eintrag

Version 1.0 – Februar 2026

OpenClaw Voice Integration 3

5. Watcher liest letzte Assistant-Nachricht aus Session-Datei

6. Responder generiert MP3 via OpenAI TTS

7. Sender schickt MP3 via wacli an WhatsApp

2.3 Verzeichnisstruktur

~/. openclaw/
+-- skills/
| +-- schadl -seniorenberatung/
| +-- voice/
| +-- __init__.py
| +-- responder.py # TTS -Generierung
| +-- sender.py # WhatsApp -Versand
| +-- watcher.py # Log -Ueberwachung
| +-- hook.py # Kontakt -Liste
+-- media/
| +-- voice/ # Generierte MP3s
+-- logs/
| +-- gateway.log # OpenClaw Gateway Log
| +-- voice -watcher.log # Watcher stdout
| +-- voice -watcher.err.log # Watcher stderr
+-- agents/

+-- main/
+-- sessions/ # Chat -Sessions (JSONL)

~/ Library/LaunchAgents/
+-- com.openclaw.voice -watcher.plist # Autostart

3 Voraussetzungen

3.1 Software

• macOS (getestet mit macOS 14+)

• Python 3.11+

• OpenClaw mit WhatsApp-Gateway

• wacli (WhatsApp CLI Tool)

3.2 API Keys

• OpenAI API Key mit TTS-Zugang

3.3 Python-Pakete

pip install openai

Version 1.0 – Februar 2026

OpenClaw Voice Integration 4

4 Installation

4.1 Verzeichnisstruktur anlegen

mkdir -p ~/. openclaw/skills/schadl -seniorenberatung/voice
mkdir -p ~/. openclaw/media/voice
mkdir -p ~/. openclaw/logs

4.2 OpenAI API Key konfigurieren

Option A: Umgebungsvariable (empfohlen)

In ~/. zshrc einfuegen:
export OPENAI_API_KEY="sk -proj -..."

Option B: Credentials-Datei

~/. openclaw/credentials/openai.json
{

"api_key ": "sk -proj -..."
}

4.3 Voice-Dateien erstellen

Erstellen Sie die Python-Dateien im Verzeichnis:

~/.openclaw/skills/schadl-seniorenberatung/voice/

Die vollständigen Dateien finden Sie in Abschnitt 6.

5 Konfiguration

5.1 Kontakte hinzufügen

In watcher.py die VOICE_CONTACTS definieren:

Voice -aktivierte Kontakte
VOICE_CONTACTS = {

"+4916090895924": "Wolfgang Schadl",
"+4915155561204": "Sandy",

}

5.2 TTS-Einstellungen

In responder.py können folgende Parameter angepasst werden:

Version 1.0 – Februar 2026

OpenClaw Voice Integration 5

Parameter Wert Beschreibung

VOICE nova Freundliche Frauenstimme
MODEL tts-1-hd HD-Qualität für beste Verständlichkeit
speed 0.9 Etwas langsamer für Senioren
LANGUAGE de Deutsch als Standardsprache

Tabelle 2: TTS-Konfigurationsparameter

5.3 Verfügbare Stimmen

Stimme Charakteristik

alloy Neutral
echo Männlich
fable Britisch
nova Freundlich weiblich (empfohlen)
onyx Tief männlich
shimmer Sanft weiblich

Tabelle 3: OpenAI TTS Stimmen

5.4 LaunchAgent für Autostart

Erstellen Sie die Datei:

~/Library/LaunchAgents/com.openclaw.voice-watcher.plist

<?xml version="1.0" encoding="UTF -8"?>
<!DOCTYPE plist PUBLIC " -//Apple //DTD PLIST 1.0// EN"

"http: //www.apple.com/DTDs/PropertyList -1.0. dtd">
<plist version="1.0">
<dict>

<key>Label </key>
<string >com.openclaw.voice -watcher </string >
<key>ProgramArguments </key>
<array >

<string >/Library/Frameworks/Python.framework/
Versions /3.11/ bin/python3 </string >

<string >/Users/mac/. openclaw/skills/
schadl -seniorenberatung/voice/watcher.py</string >

</array >
<key>RunAtLoad </key>
<true/>
<key>KeepAlive </key>
<dict>

<key>SuccessfulExit </key>
<false/>

</dict>
<key>EnvironmentVariables </key>
<dict>

<key>PYTHONPATH </key>
<string >/Users/mac/. openclaw/skills/

schadl -seniorenberatung/voice </string >

Version 1.0 – Februar 2026

OpenClaw Voice Integration 6

<key>OPENAI_API_KEY </key>
<string >sk -proj -...</string >
<key>HOME</key>
<string >/Users/mac</string >
<key>PATH</key>
<string >/opt/homebrew/bin:/usr/bin:/bin</string >

</dict>
<key>StandardOutPath </key>
<string >/Users/mac/. openclaw/logs/voice -watcher.log</string >
<key>StandardErrorPath </key>
<string >/Users/mac/. openclaw/logs/voice -watcher.err.log</string >
<key>ThrottleInterval </key>
<integer >10</integer >

</dict>
</plist >

5.4.1 LaunchAgent aktivieren

Laden
launchctl bootstrap gui/$(id -u) \

~/ Library/LaunchAgents/com.openclaw.voice -watcher.plist

Entladen
launchctl bootout gui/$(id -u) \

~/ Library/LaunchAgents/com.openclaw.voice -watcher.plist

Status pruefen
launchctl print gui/$(id -u)/com.openclaw.voice -watcher

6 Dateien im Detail

6.1 responder.py – TTS-Generierung

Diese Datei ist das Herzstück der Voice-Generierung:

#!/usr/bin/env python3
""" Voice Responder fuer Seniorenberatung
OpenAI TTS mit freundlicher Frauenstimme nova
Optimiert fuer Senioren: langsames Tempo , klare Aussprache
"""

import os
import json
from pathlib import Path
from datetime import datetime
from openai import OpenAI

def get_openai_api_key () -> str:
""" Holt den OpenAI API Key aus verschiedenen Quellen."""
1. Umgebungsvariable

Version 1.0 – Februar 2026

OpenClaw Voice Integration 7

if os.getenv("OPENAI_API_KEY"):
return os.getenv("OPENAI_API_KEY")

2. OpenClaw Credentials
cred_path = Path.home() / ".openclaw/credentials/openai.json"
if cred_path.exists ():

with open(cred_path) as f:
data = json.load(f)
if "api_key" in data:

return data["api_key"]

raise ValueError("OPENAI_API_KEY nicht gefunden")

Konfiguration
VOICE = "nova" # Freundliche Frauenstimme
MODEL = "tts -1-hd" # HD Qualitaet
LANGUAGE = "de" # Deutsch
OUTPUT_DIR = Path.home() / ".openclaw/media/voice"

class VoiceResponder:
""" Generiert Sprachnachrichten fuer die Seniorenberatung."""

def __init__(self , voice: str = VOICE , model: str = MODEL):
self.client = OpenAI(api_key=get_openai_api_key ())
self.voice = voice
self.model = model
self.output_dir = OUTPUT_DIR
self.output_dir.mkdir(parents=True , exist_ok=True)

def generate(self , text: str , contact_id: str = "default") ->
Path:
""" Generiert eine Sprachnachricht aus Text."""
Optimierungen
text = self._ensure_german(text)
text = self._optimize_for_seniors(text)

Generiere Audio
response = self.client.audio.speech.create(

model=self.model ,
voice=self.voice ,
input=text ,
speed =0.9 # Langsamer fuer Senioren

)

Speichere Datei
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"seniorenberatung_{contact_id}_{timestamp }.mp3"
filepath = self.output_dir / filename

response.stream_to_file(str(filepath))
return filepath

def _ensure_german(self , text: str) -> str:
""" Stellt deutsche Aussprache sicher."""
german_starters = (

"hallo", "guten", "liebe", "sehr", "hier",

Version 1.0 – Februar 2026

OpenClaw Voice Integration 8

"das", "die", "der", "ein", "eine", "ich",
"wir", "es", "ja", "nein", "also", "nun"

)

first_word = text.strip ().split ()[0]. lower () if
text.strip () else ""

if any(first_word.startswith(s) for s in german_starters):
return text

Deutscher Praefix fuer Spracherkennung
return f"Also: {text}"

def _optimize_for_seniors(self , text: str) -> str:
""" Optimiert Text fuer bessere Verstaendlichkeit."""
replacements = {

"EUR": " Euro",
"%": " Prozent",
"z.B.": "zum Beispiel",
"bzw.": "beziehungsweise",
"usw.": "und so weiter",
"d.h.": "das heisst",
"u.a.": "unter anderem",
"ca.": "circa",
"inkl.": "inklusive",
"MDK": "M D K",

}
for old , new in replacements.items ():

text = text.replace(old , new)
return text

Singleton
_responder = None

def get_responder () -> VoiceResponder:
global _responder
if _responder is None:

_responder = VoiceResponder ()
return _responder

def generate_voice(text: str , phone: str = "default") -> str:
""" Hauptfunktion fuer OpenClaw Integration."""
contact_id = phone.replace("+", "").replace(" ", "")[-6:]
filepath = get_responder ().generate(text , contact_id)
return str(filepath)

6.2 sender.py – WhatsApp-Versand

#!/usr/bin/env python3
""" WhatsApp Voice Sender via wacli """

import subprocess
import json

Version 1.0 – Februar 2026

OpenClaw Voice Integration 9

import shutil
from pathlib import Path

wacli Pfad - fuer LaunchAgent mit vollem Pfad
WACLI_PATH = shutil.which("wacli") or "/opt/homebrew/bin/wacli"

def send_voice_message(audio_path: str , to_phone: str) -> dict:
""" Sendet eine Sprachnachricht via wacli."""

Pruefe ob Datei existiert
if not Path(audio_path).exists ():

return {
"success": False ,
"error": f"Datei nicht gefunden: {audio_path}"

}

Baue wacli Kommando
cmd = [

WACLI_PATH , "send", "file",
"--to", to_phone ,
"--file", audio_path ,
"--mime", "audio/mpeg",
"--json"

]

try:
result = subprocess.run(

cmd ,
capture_output=True ,
text=True ,
timeout =60

)

if result.returncode == 0:
try:

output = json.loads(result.stdout) if
result.stdout else {}

except json.JSONDecodeError:
output = {"raw": result.stdout}

return {
"success": True ,
"to": to_phone ,
"file": audio_path ,
"output": output

}
else:

return {
"success": False ,
"error": result.stderr or result.stdout ,
"returncode": result.returncode

}

except subprocess.TimeoutExpired:
return {"success": False , "error": "Timeout beim Senden"}

except Exception as e:
return {"success": False , "error": str(e)}

Version 1.0 – Februar 2026

OpenClaw Voice Integration 10

6.3 watcher.py – Log-Überwachung

Der Watcher ist die zentrale Komponente:

#!/usr/bin/env python3
""" Voice Response Watcher fuer Schadl Seniorenberatung """

import os
import sys
import json
import time
import re
from pathlib import Path

Unbuffered output fuer LaunchAgent
sys.stdout = os.fdopen(sys.stdout.fileno (), ’w’, buffering =1)
sys.stderr = os.fdopen(sys.stderr.fileno (), ’w’, buffering =1)

Voice -Module importieren
sys.path.insert(0, str(Path(__file__).parent))
from responder import generate_voice
from sender import send_voice_message

Konfiguration
LOG_FILE = Path.home() / ".openclaw/logs/gateway.log"
SESSIONS_DIR = Path.home() / ".openclaw/agents/main/sessions"

Voice -aktivierte Kontakte
VOICE_CONTACTS = {

"+4916090895924": "Wolfgang Schadl",
"+4915155561204": "Sandy",

}

CHECK_INTERVAL = 2
MIN_RESPONSE_LENGTH = 50
MAX_RESPONSE_LENGTH = 2000

def get_latest_session_file ():
""" Findet die neueste Session -Datei."""
if not SESSIONS_DIR.exists ():

return None
sessions = list(SESSIONS_DIR.glob("*. jsonl"))
if not sessions:

return None
return max(sessions , key=lambda p: p.stat().st_mtime)

def get_last_assistant_message(session_file):
""" Extrahiert die letzte Assistant -Nachricht."""
try:

with open(session_file) as f:
lines = f.readlines ()

for line in reversed(lines):
try:

entry = json.loads(line.strip ())
if entry.get("type") == "message":

Version 1.0 – Februar 2026

OpenClaw Voice Integration 11

msg = entry.get("message", {})
if msg.get("role") == "assistant":

content = msg.get("content", "")
if isinstance(content , list):

for block in content:
if block.get("type") == "text":

return block.get("text", "")
elif isinstance(content , str):

return content
except:

continue
return None

except Exception as e:
print(f"[watcher] Fehler: {e}")
return None

def clean_for_voice(text):
""" Entfernt Markdown und Formatierung."""
text = re.sub(r’**(.*?) **’, r’\1’, text)
text = re.sub(r’*(.*?) *’, r’\1’, text)
text = re.sub(r’#{1 ,6}\s*’, ’’, text)
text = re.sub(r’\[([^\]]+) \]\([^\)]+\)’, r’\1’, text)
return text.strip ()

def process_response(phone , name):
""" Verarbeitet eine Antwort und sendet Voice."""
session_file = get_latest_session_file ()
if not session_file:

return False

response_text = get_last_assistant_message(session_file)
if not response_text:

return False

voice_text = clean_for_voice(response_text)

if len(voice_text) < MIN_RESPONSE_LENGTH:
return False

if len(voice_text) > MAX_RESPONSE_LENGTH:
voice_text = voice_text [: MAX_RESPONSE_LENGTH] + "..."

print(f"[watcher] Generiere Voice ...")
voice_path = generate_voice(voice_text , phone)

print(f"[watcher] Sende an {name }...")
result = send_voice_message(voice_path , phone)

if result.get("success"):
print(f"[watcher] Erfolgreich!")
return True

else:
print(f"[watcher] Fehler: {result.get(’error ’)}")
return False

Version 1.0 – Februar 2026

OpenClaw Voice Integration 12

def watch_log ():
""" Hauptschleife: Ueberwacht Log auf neue Antworten."""
print(f"[watcher] Starte fuer {len(VOICE_CONTACTS)} Kontakte")

last_position = 0
if LOG_FILE.exists ():

last_position = LOG_FILE.stat().st_size

while True:
try:

if not LOG_FILE.exists ():
time.sleep(CHECK_INTERVAL)
continue

current_size = LOG_FILE.stat().st_size

if current_size > last_position:
with open(LOG_FILE) as f:

f.seek(last_position)
new_lines = f.readlines ()
last_position = f.tell()

for line in new_lines:
match = re.search(r’Auto -replied to (\+\d+)’,

line)
if match:

phone = match.group (1)
if phone in VOICE_CONTACTS:

name = VOICE_CONTACTS[phone]
print(f"[watcher] Neue Antwort an

{name}")
process_response(phone , name)

time.sleep(CHECK_INTERVAL)

except Exception as e:
print(f"[watcher] Fehler: {e}")
time.sleep(CHECK_INTERVAL)

if __name__ == "__main__":
watch_log ()

7 Workflow-Beispiel

7.1 Sandy fragt nach Nachbarschaftshilfe

1. Eingehende Nachricht

Sandy schreibt via WhatsApp:

Version 1.0 – Februar 2026

OpenClaw Voice Integration 13

WhatsApp-Nachricht

„ich bin 75 jahre und kann kein auto mehr fahren, wohne in wabern, sag mir die nächste
nachbarschaftshilfe“

2. OpenClaw antwortet

OpenClaw sendet eine Textantwort mit Kontaktdaten der Nachbarschaftshilfe.

3. Watcher erkennt

Im gateway.log erscheint:

2026 -02 -04 T18 :12:54Z [whatsapp] Auto -replied to +4915155561204

4. Voice wird generiert

Der Responder erstellt eine MP3-Datei:

~/. openclaw/media/voice/seniorenberatung_561204_20260204_181254.mp3

5. Voice wird gesendet

Sandy erhält zusätzlich zur Textnachricht eine Sprachnachricht.

8 Fehlerbehebung

8.1 Watcher läuft nicht

Status pruefen
ps aux | grep watcher

Logs pruefen
tail -50 ~/. openclaw/logs/voice -watcher.log
tail -50 ~/. openclaw/logs/voice -watcher.err.log

Manuell starten zum Testen
python3 ~/. openclaw/skills/schadl -seniorenberatung/voice/watcher.py

8.2 wacli nicht gefunden

Im LaunchAgent muss der volle Pfad zu wacli verwendet werden:

Pfad ermitteln
which wacli
Typisch: /opt/homebrew/bin/wacli

In sender.py pruefen:
WACLI_PATH = "/opt/homebrew/bin/wacli"

Version 1.0 – Februar 2026

OpenClaw Voice Integration 14

8.3 OpenAI API Fehler

API Key testen
python3 -c "
from openai import OpenAI
client = OpenAI ()
print(client.models.list())
"

8.4 Store is locked (wacli)

Wenn wacli blockiert ist:

Alle wacli -Prozesse beenden
pkill -9 wacli

Kurz warten , dann erneut versuchen
sleep 3
wacli send file --to ... --file ...

8.5 Voice-Datei manuell senden

Letzte Voice -Datei finden
ls -lt ~/. openclaw/media/voice/ | head -5

Manuell senden
wacli send file \

--to 4915155561204 \
--file ~/. openclaw/media/voice/seniorenberatung_561204_ *.mp3

Tipp

Bei Problemen immer zuerst die Log-Dateien prüfen. Der Watcher schreibt alle Aktionen
und Fehler in die Log-Dateien unter ~/.openclaw/logs/.

9 Zusammenfassung

Datei Funktion

responder.py OpenAI TTS Generierung (nova, 0.9x, HD, deutsch)
sender.py WhatsApp-Versand via wacli
watcher.py Log-Überwachung, Multi-Kontakt-Support
hook.py Voice-Kontakte Liste
LaunchAgent Autostart bei Mac-Login

Tabelle 4: Übersicht aller Dateien

Version 1.0 – Februar 2026

OpenClaw Voice Integration 15

Ende des Handbuchs

Version 1.0 – Februar 2026

